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The problem of automatically proving the equality of terms over recursive functions and inductive data types

is challenging, as such proofs often require auxiliary lemmas which must themselves be proven. Previous

attempts at lemma discovery compromise on either efficiency or efficacy. Goal-directed approaches are fast

but limited in expressiveness, as they can only discover auxiliary lemmas which entail their goals. Theory

exploration approaches are expressive but inefficient, as they exhaustively enumerate candidate lemmas.

We introduce e-graph guided lemma discovery, a new approach to finding equational proofs that makes

theory exploration goal-directed. We accomplish this by using e-graphs and equality saturation to efficiently

construct and compactly represent the space of all goal-oriented proofs. This allows us to explore only those

auxiliary lemmas guaranteed to help make progress on some of these proofs. We implemented our method

in a new prover called CCLemma and compared it with three state-of-the-art provers across a variety of

benchmarks. CCLemma performs consistently well on two standard benchmarks and additionally solves 50%

more problems than the next best tool on a new challenging set.
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1 Introduction

There are many reasons to want a theorem prover which can automatically verify the equality
of two recursive programs. One reason is to ensure an optimized program remains faithful to its
original implementation. Suppose we are asked to write a function mtp that computes themaximum
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tail product of a list of natural numbers. For example, mtp [2,0,3,4] = 12, the product of the suffix
[3,4]. In a functional language like Haskell, a straightforward and obviously correct way to write
mtp is as the composition of standard library functions:

mtp = maximum . map product . tails

(here, tails returns all the suffixes of a list, and product and maximum compute, respectively, the
product and the maximum of a list of numbers). The program above, however, is slowed by tails,
which takes quadratic time. Upon realizing this, we migh write an optimized version mtp' which
only takes a single pass, using the product of the whole list—prod—as an auxiliary accumulator:

mtp' = fst . foldr (\x (res,prod) → (max res (prod*x), prod*x)) (1,1)

Our second version is more efficient, but less obviously correct. Wouldn’t it be nice if a tool could
confirm for us that mtp' is in fact equivalent to mtp? In other words, we would like to automatically
find a proof of the following universally-quantified proposition:

∀xs . mtp xs � mtp' xs (1)

Unfortunately, no existing tools can prove proposition (1), at least not within five minutes. This
proof is challenging because it relies on several auxiliary lemmas, most notably:

∀xs . snd (mtp' xs) � product xs (2)

Challenge: Lemma Discovery. Clearly, we are not the first ones interested in automating inductive
equational reasoning for properties which require auxiliary lemmas—we refer the reader to Jo-
hansson [2019] for an excellent survey of the area. At a high level, existing approaches to lemma
discovery can be divided into two categories.1 Goal-directed techniques, such as Zeno [Sonnex
et al. 2012] and IsaPlanner [Dixon and Fleuriot 2004], use heuristics to generalize proof goals
they encounter into lemmas. These techniques are fast, but limited in expressiveness. They cannot
discover lemma (2) above because it is not a generalization of (1), but rather relates subterms of the
original goal. Theory exploration techniques, such as HipSpec [Claessen et al. 2013], TheSy [Singher
and Itzhaky 2021], or the inductive prover inside CVC4 [Reynolds and Kuncak 2015], exhaustively
enumerate and prove candidate lemmas over a given vocabulary of functions, using evaluation on
concrete or semi-concrete values to identify promising candidates. These techniques are expressive,
but struggle to scale to large vocabularies and lemma sizes. While they might discover lemma (2)
eventually, they get bogged down proving many irrelevant facts about natural numbers and lists
from the large vocabulary admitted by our running example.

Our Solution: E-Graph Guided Lemma Discovery. In this paper, we attempt to make theory
exploration more goal-directed by only proposing lemmas that can make progress in the proof of the

original goal. This is easier said that done, however, since there are many ways we can attempt to
prove our goal and get stuck, and it is not clear which one of these stuck proof states is the most
promising source of lemmas. To address this challenge, we propose to use e-graphs [de Moura and
Bjorner 2007; Nelson and Oppen 1980] and equality saturation [Tate et al. 2009; Willsey et al. 2021]
to efficiently construct and compactly represent the space of all stuck proof states. We dub this
approach e-graph guided lemma discovery. At a high-level, the approach works as follows:

(1) it uses equality saturation to compute the set of all terms that are known to be equal to the
left- and right-hand sides of the original goal, given the currently available lemmas (including
the induction hypothesis);

1See Sec. 6 for a more comprehensive and nuanced discussion.
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(2) it then identifies equivalence classes of proof terms that are not yet known to be equal to each
other, but are likely equal based on concrete evaluation, and proposes equalities between
those classes as candidate lemmas.

We refer to these lemmas as connector lemmas because, if proven, they are guaranteed to connect
(merge) two distinct equivalence classes of proof terms and therefore make progress in the proof.
This approach to lemma discovery attempts to strike a balance between the expressiveness of theory
exploration and the efficiency of goal-directed techniques: unlike unguided theory exploration, it is
incomplete, but it is able to discover many useful lemmas, including lemma (2) above.

The CCLemma Prover. We implement our approach in an automated theorem prover called
CCLemma,2 which is included in our accompanying artifact [Kurashige et al. 2024]. We evaluate
CCLemma on two benchmark suites from prior work as well as a new, more challenging benchmark
suite of program optimization problems, like our mtp example above. Our experiments show that
CCLemma is able to prove many properties that are out of reach for existing tools; for example,
it can prove proposition (1) in less than a second. Compared against existing tools, CCLemma is
consistently a top performer across all datasets, solving the benchmark suites from prior work
faster and solving 50% more optimization problems than the next best tool.

Contributions. In summary, this paper makes the following contributions:

• We show how to perform inductive equational reasoning using e-graphs and equality satura-
tion, and propose a new termination check that works well with this approach.
• We propose a new technique for lemma discovery, e-graph guided lemma discovery, which
extracts connector lemmas from the e-graph of a stuck proof state.
• We implement our approach in the CCLemma prover, which empirically outperforms existing
theory exploration tools both in terms of efficiency and scalability to challenging problems.

2 Overview

In this section we introduce inductive equational proofs, illustrate how to automate them using
e-graphs and equality saturation, and finally show how to use e-graphs to guide lemma discovery.
We use a simple running example throughout this section, in the interest of clarity.

2.1 Inductive Equational Proofs

Inductive equational reasoning is concerned with proving universally-quantified equalities about
inductive datatypes and recursive functions.3 Fig. 1 shows an inductive datatype Nat of natural
numbers and two recursive functions over this type, written in Haskell-like syntax. From these
definitions it follows that adding any number G to itself and then halving the result yields G back:

∀G : Nat. half (add G G) � G (half_double)

Though intuitively true, (half_double) needs to be proven by induction: Fig. 2 shows one possible
proof. Importantly, this proof assumes that we already know the following lemma about add:4

∀=,< : Nat. add = (S<) � S (add = <) (add_right)

The proof proceeds by case analysis on G . In the base case, we can simply rewrite the left-hand
side (LHS), half (add Z Z), to the right hand side (RHS), Z, by definition of add and half. In the
inductive case, rewriting the LHS to the RHS requires these definitions again, and additionally the
use of the lemma (add_right) and the inductive hypothesis (IH).

2Its name stands for Conjecturing Connector Lemmas.
3In section Sec. 4.4 we also consider conditional equalities, but for now we focus on purely equational proofs.
4Sec. 2.3 will discuss how this lemma might be discovered automatically.
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data Nat = Z

| S Nat

add :: Nat → Nat → Nat

add n m = case n of

Z → m

S n' → S (add n' m)

half :: Nat → Nat

half n = case n of

Z → Z

S Z → Z

S (S n') → S (half n')

Fig. 1. Inductive datatype Nat of natural numbers and two recursive functions add and half over this type.

0 case x of

1 Z →

2 half (add Z Z) -- def: add Z y = y

3 � half Z -- def: half Z = Z

4 � Z

5 S x' →

6 half (add (S x') (S x')) -- def: add (S x') y = S (add x' y)

7 � half (S (add x' (S x'))) -- lemma add_right: add y (S x') = S (add y x')

8 � half (S (S add x' x')) -- def: half (S (S x')) = S (half x')

9 � S (half (add x' x')) -- IH: half (add x' x') = x'

10 � S x'

Fig. 2. Proof outline of (half_double): ∀G : Nat. half (add G G) � G .

While this proof is relatively easy for a human to come up with, discovering it automatically is
not exactly straightforward (even if we assume the lemma (add_right) is given). For example, in
line 9 of the proof, instead of applying the IH left-to-right to rewrite half (add x' x') to x', we
could have just as well applied it right-to-left to expand one of the two occurrences of x'; even
worse, this incorrect way of applying the IH can be repeated indefinitely, leading to divergence:

S (half (add G ′G ′)) � S (half (add G ′ (half (add G ′G ′)))) �

S (half (add G ′ (half (add G ′ (half (add G ′G ′)))))) � . . . (3)

An automated prover is required to make many such choices that may crucially affect the proof
construction, its success/failure, and performance; three important ones are:

(1) Which equality to apply? (A definition? A lemma? The IH?)
(2) Where to apply this equality (to which sub-term and in which direction)?
(3) When to give up applying equalities and instead perform a case split?

Because they cannot always know the right choice, automated inductive provers conventionally
perform backtracking proof search, trying different choices and backtracking when they get stuck.

2.2 Automating Proofs with E-Graphs and Equality Saturation

In recent years, equality saturation (EqSat) [Tate et al. 2009; Willsey et al. 2021] has emerged as an
efficient alternative to backtracking search for equational reasoning. Instead of choosing which
equality to apply and how, EqSat applies all possible equalities at once, storing the resulting set of
terms in a data structure called an e-graph [Nelson and Oppen 1980]. What makes this simple idea
work is that e-graphs can represent exponentially large (and even infinite) classes of equal terms
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Fig. 3. E-graph-based proof search for (half_double).

compactly. While EqSat is traditionally used for equational reasoning in domains that do not require
induction [Willsey et al. 2021; Yang et al. 2021], in this paper we show how it can be extended to
inductive reasoning.5 Fig. 3 illustrates how CCLemma uses EqSat to prove (half_double).

Proof States as E-Graphs. CCLemma represents the initial proof state as the e-graph , which
stores the LHS and the RHS of (half_double), namely half (add x x) and x. You can think of this
e-graph as simply containing the abstract syntax trees (ASTs) of the two terms, but with sharing
between common sub-terms (here, just x); in particular, the ovals in the figure—called e-nodes—
correspond to AST nodes. Unlike in an AST, however, edges in an e-graph do not point to other
e-nodes, and instead point to e-classes—sets of e-nodes proven equal—represented in the figure
as colored rectangles. Since we haven’t proven anything equal yet, all the e-classes in our initial
e-graph are singletons. We purposefully highlight the two e-classes corresponding to the LHS
and the RHS of (half_double), marked 2; and 2A in the figure. CCLemma’s ultimate goal is to merge

these two e-classes into one, which would constitute a proof that they are equal.

5TheSy [Singher and Itzhaky 2021] uses a similar idea for its inductive proofs, but in this paper we extend it to full-fledged

proof search; see Sec. 6 for a more comprehensive comparison.
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Rewrite Rules. Equality saturation grows the e-graph via a set of rewrite rules. CCLemma distin-
guishes two kinds of rewrite rules: reductions are derived from function definitions, such as:

add Z ?= ⇒?= add (S ?=) ?< ⇒ S (add ?= ?<) half Z⇒ Z . . .

Lemma rewrites include user-provided lemmas and the inductive hypothesis (IH):

add_right : add ?= (S ?<) ⇔ S (add ?= ?<) IH : half (add ?~ ?~) ⇔?~ | ?~ ≺ G

Lemma rewrites are bidirectional, i.e. they can be applied both ways (unless one of the sides of the
lemma has variables that do not appear in the other side). The IH rewrite is also conditional: it only
applies when the term matched by the pattern variable ?~ is smaller than the universally-quantified
variable G of the goal. This check is necessary to ensure termination, i.e. that the induction is
well-founded (see Sec. 3.3 for details of how we define this check).

Case Spli�ing. Since none of the rewrite rules apply to any terms in the e-graph , the only
way to proceed is to case-split on G , the only universal variable in our goal. This transforms the
original goal into two sub-goals, represented by the e-graphs and , where G is replaced by
the corresponding constructors of Nat with fresh universal variables as arguments. Both of these
sub-goals have to be solved in order to prove the original proposition.

Saturation. To prove sub-goal , CCLemma invokes equality saturation on its e-graph. This
e-graph contains the term add Z Z, which matches the reduction add Z ?= ⇒?=, instantiated to
add Z Z⇒ Z. As a result of this rewrite, the e-classes containing add Z Z and Z are merged into one
(if the RHS of the rewrite weren’t already in the e-graph, it would be added). Now the e-graph also
contains the term half Z, which matches the reduction half Z⇒ Z. Applying this rewrite merges
the e-classes 2; and 2A , thus completing the proof of this sub-goal.
Sub-goal is solved similarly, except that here we also get to apply our two lemma rewrites.

Importantly, we need not worry about which rewrites to apply where: EqSat applies all of them
in arbitrary order, until the e-graph is saturated, i.e. further rule applications do not change the
e-graph. To see why we need not worry about going down a rabbit hole like in (3), consider what
happens when we apply the IH to rewrite half (add G ′ G ′) to G ′. This places both terms into the
same e-class 21, creating a cycle in the e-graph between 21 and 22. This cycle represents an infinite
set of terms and equalities, including those described in (3). If we now try to apply the IH backwards
to G ′—the only term it can be applied to, since only G ′ is smaller than G—this will not lead to any
further changes in the e-graph.

In summary, EqSat gives CCLemma simple answers to the three choices we discussed earlier:

(1) Which equality to apply? All of them!
(2) Where to apply this equality? Everywhere!
(3) When to give up and case-split? When the e-graph is saturated, but the LHS and the RHS

have not been merged.6

2.3 E-graph Guided Lemma Discovery

In the previous section, our proof of (half_double) relied on the lemma (add_right); but where
would this lemma come from? In the setting of automated theorem proving, we cannot expect the
user to provide the necessary lemmas; instead the prover needs to discover them automatically.
The most effective known approach to lemma discovery is theory exploration [Claessen et al.

2013; Johansson 2019; Singher and Itzhaky 2021]. Theory exploration essentially enumerates all

6One remaining question is which variable to case-split on; we discuss this further in Sec. 4.4.
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Fig. 4. Discovering the connector lemma (add_right) using the e-graph from the proof of (half_double). Terms

that are not in normal form have been removed—as well as an unnecessary application of the inductive

hypothesis—to simplify its presentation.

possible lemmas over the vocabulary of the target property—in our case, Z, S, add, and half—and
tries to prove them, until one of the proven lemmas helps prove the property.7

Although existing theory exploration tools use clever heuristics to prune the space of candidate
lemmas, they can still have trouble scaling to large lemmas and large vocabularies. Our key
observation is that a significant number of lemmas proven by these tools are irrelevant to the target
property, i.e. they cannot be applied in its proof to establish new equalities. In our running example,
one of the lemmas theory exploration discovers is associativity of addition:

∀G,~, I : Nat. add G (add ~ I) � add (add G ~) I

To see why this lemma cannot make progress in the proof of (half_double), consider all the proof
states in Fig. 3: the only terms this lemma matches are add Z (add Z Z) and similar in e-graph , but
all these terms are already in the same e-class, so the lemma does not establish any new equalities.

This observation yields a powerful lemma discovery heuristic for EqSat-based inductive reasoning:
only consider lemmas that can connect (merge) two different e-classes in a proof state. We refer to
such lemmas as connector lemmas, and to the overall approach as e-graph guided lemma discovery.

Extracting Connector Lemmas. How does CCLemma prove the proposition (half_double) if the
lemma (add_right) is not given? In this case, saturating the e-graph from Fig. 3 does not actually
solve the goal: instead of leading to the e-graph , saturation results in the e-graph , shown in
Fig. 4. From there, a second level of case-splitting and saturation generates the e-graph (to avoid
clutter, we removed from this e-graph all terms that are not in normal form wrt. to the reductions;
as you will see in Sec. 3, CCLemma in fact also removes such terms from the e-graph). Note that the
e-class 21 in this e-graph contains the term add G ′′ (S (S G ′′)), while the e-class 22 contains the term
S (add G ′′ (S G ′′)). CCLemma conjectures that these two terms should be equal, and then obtains the
connector lemma (add_right) by generalizing their common sub-terms, S G ′′ into a fresh variable ~.

7Alternatively, theory exploration can be used in an offline mode, to discover all potentially useful lemmas for a given

library of functions, without a specific target property in mind. While offline theory exploration has its advantages—e.g.

we can afford to spend hours searching for lemmas—it is not feasible when the library is large or when new functions are

added in parallel with new properties to prove; for this reason, we focus on online lemma discovery in this paper.
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Pruning with C-vecs. Even if we restrict lemma discovery only to connector lemmas, this still
permits too many candidate lemmas to possibly consider. Fortunately, most of these candidates are
easily proven untrue. For example, if we tried to connect the e-classes 23 and 24 in the e-graph ,
we would get spurious lemmas such as:

∀G : Nat. add G (S G) � G

This lemma can be shown spurious by evaluating it at G = Z: we discover that add Z (S Z) = S Z ≠ Z.
In practice, most theory exploration tools use counterexamples like these to quickly filter out the
vast majority of untrue lemmas—of which there are many more than true lemmas—to avoid wasting
time trying to prove them. They generate random concrete values for the variables in a lemma
and then check whether the lemma holds for these values. If implemented naïvely, however, the
concrete evaluation itself can become a bottleneck.
To implement concrete evaluation efficiently, CCLemma borrows an idea from Ruler [Nandi

et al. 2021]: it leverages an e-graph mechanism called e-class analysis [Willsey et al. 2021], to
incrementally propagate concrete values through the e-graph, taking advantage of sharing to avoid
recomputation. More concretely, CCLemma annotates each e-class with a characteristic vector (or
c-vec for short) as shown in the e-graph in Fig. 4. The c-vecs in the figure were computed by
first initializing the universally-quantified variable G ′′ with a random vector—here [0, 1, 2, 3]—and
then incrementally computing the c-vecs of other e-classes bottom-up.

With the c-vecs in place, CCLemma avoids conjecturing many spurious lemmas by only connect-
ing e-classes whose c-vecs match. For example, CCLemma will extract lemmas from the e-classes
⟨21, 22⟩ (by enumerating all pairs of terms from these e-classes, following cycles up to a fixed depth),
but it will not extract lemmas from ⟨23, 24⟩. Another benefit of the c-vecs is that if we discover a
mismatch between the c-vecs of 2; and 2A , we can immediately rule the property invalid.

Summary. In summary, the key insight of e-graph guided lemma discovery is to only conjecture
lemmas that can establish new equalities between terms already explored by the proof search.
E-graphs make this idea feasible for three reasons:

(1) E-graphs compactly represent the terms and equalities reachable by proof search, allowing
us to conjecture many connector lemmas simultaneously.

(2) Even if lemma discovery finds a large number of lemmas, applying them to the proof of the
main goal and other lemmas is efficient, thanks to equality saturation.

(3) Incremental c-vec analysis enables efficient pruning of spurious lemmas.

CCLemma combines the techniques described in Sections 2.2 and 2.3 into a proof search algorithm
that processes goals by applying the following steps:

(1) Saturate. Run equality saturation and check whether the LHS and RHS are in the same
e-class.

(2) Case Split. Select a variable in the goal and perform a case split according to its datatype,
creating one or more new sub-goals.

(3) Conjecture new connector lemmas, which themselves become new goals. Successfully
proven lemmas are introduced as rewrite rules.

Proof search is then just scheduling which goal to try next to ensure the original goal is discharged.

3 Equational Reasoning

In this section we introduce the proof system used by CCLemma and formalize equality saturation.
Our formalization of inductive equational reasoning in the context of a higher-order rewriting
system is adopted from CycleQ [Jones et al. 2021] (although our proofs are not cyclic).
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Refl
R; Γ ⊢ " � "

Rewr

R; Γ ⊢ !′ � '′ ! →∗
R
!′ ' →∗

R
'′

R; Γ ⊢ ! � '

Ind
G8 = vars(Γ) \ = [G8 ↦→?~8 ] R, (!\ ⇔ '\ | ?~8 ≺ G8 ); Γ ⊢ ! � '

R; Γ ⊢ ! � '

Case
∀: : g8 → 3 ∈ Σcons (3) \ = [G ↦→ : ~8 ] R\ ; Γ, ~8 : g8 ⊢ !\ � '\

R; Γ, G : 3 ⊢ ! � '

Fig. 5. The inference rules of inductive equational reasoning.

3.1 Preliminaries

Types and Terms. We assume a fixed signature, which consists of algebraic datatypes � and
function symbols Σ. The types, g, f of the system include datatypes and functions:8

g, f ::= 3 ∈ � | g → f

The signature assigns types to all function symbols, written 5 : g ∈ Σ. Function symbols are divided
into two categories: constructors Σcons (such as Z and S) and defined functions Σdef (such as add).
Terms are constructed from variables, function symbols, and applications:

!,", #, ' ::= G | 5 ∈ Σ | " #

Terms that have no variables or defined functions are called values. A type environment (Γ or Δ) is
a set of type bindings G : g ; we write Γ,Δ for a disjoint union of two environments. The typing
rules are standard; in the following we restrict our attention to well-typed terms.

Term Rewriting. A (conditional) rewrite rule is written" ⇒ # | q , where" and # are terms that
have the same type 3 ∈ � in some environment Γ and q is a formula over vars("). The exact logic
used in q is not important, as long as the term-rewriting engine can check its validity. We write
" ⇒ # as shorthand for" ⇒ # | ⊤. A bidirectional rewrite notation" ⇔ # stands for a set of
at most two rewrites rules, which includes" ⇒ # if vars(# ) ⊆ vars("), and includes # ⇒ " if
vars(") ⊆ vars(# ).

A context is either a hole or an application with a context on one side:

� [·] ::= · | � [·] " | " � [·]

A substitution \ = [G8 ↦→ "8 ] is a partial function from variables to terms.9 Applying a substitution
to a term is denoted"\ .

The rewrite rule A of the form" ⇒ # | q induces a one-step reduction relation" ′ →A #
′ if" ′

is of the form � ["\ ], # ′ is of the form � [#\ ], and the formula q\ holds. In this case, \ is called
the match substitution. For a set of rewrite rules R, we define the one-step reduction " →R # if
" →A # for some A ∈ R. The reduction relation " →∗

R
# is the reflexive transitive closure of

one-step reduction→R . We omit the subscript if the rule set is clear from context.

3.2 Proof System

Our proof system operates over equations of the form R; Γ ⊢ ! � ', where ! and ' are terms that
have the same type 3 in Γ. The rewrites R encode the reductions and lemmas available to the proof.
We assume that pattern variables, vars(R), are disjoint from the variables used in ! and ', vars(Γ);
to make this explicit, we use a naming convention ?G, ?~ for pattern variables.

8This formalization is simply-typed in the interest of brevity; CCLemma supports polymorphic datatypes.
9Hereafter we write - to denote zero or more occurrences of a syntactic element - .
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Ind

Case

Rewr

Refl
R′; · ⊢ Z � Z

R′; · ⊢ half (add Z Z) � Z
Rewr

Rewr

Rewr

Refl
. . . ⊢ S G ′ � S G ′ G ′ ≺ S G ′

. . . ⊢ (S (half (add G ′ G ′))) � S G ′

. . . ⊢ half (S (add (S G ′) G ′)) � S G ′

R′′;G ′ : Nat ⊢ half (add (S G ′) (S G ′)) � S G ′

R; half (add ?~ ?~) ⇔?~ |?~ ≺ G ;G : Nat ⊢ half (add G G) � G

R;G : Nat ⊢ half (add G G) � G

Fig. 6. A proof derivation for (half_double) (with the lemma (add_right) given).

The proof system has four inference rules, shown in Fig. 5:

• Refl is the usual reflexivity axiom, which concludes that proof once the two sides of the
equation are syntactically equal.
• Rewr allows rewriting both sides of the equation using the rewrites in R for any number
of steps; note that this rules does not require !′ and '′ to be in normal form, since R is not
necessarily normalizing.
• Ind adds the induction hypothesis (IH) to R. The IH is a bidirectional conditional rewrite

!\ ⇔ '\ | ?~8 ≺ G8 , where \ simply renames the original variables G8 used in ! and ' to fresh

variables ?~8 . The condition ?~8 ≺ G8 ensures termination and is discussed in more detail later
in this section. Ind is meant to be applied once, at the root of the derivation; although it is
possible to allow multiple applications, simulating cyclic proofs [Jones et al. 2021], we have
not found a need for this in practice.
• Case picks a variable G : 3 in Γ to case-split on, and creates a subgoal for each constructor :
of the datatype 3 ; we assume that the variables ~8 , used as constructor parameters, are fresh.
Note that Case substitutes the scrutinee G not only in the equation, but also in the rewrites
R; the only place where G can appear in R is in the termination condition of the IH, and this
substitution enables a simple syntactic definition of the ≺ order.

Example derivation. Fig. 6 shows a proof derivation for our example from Sec. 2:

R;G : Nat ⊢ half (add G G) � G

Here R includes the reductions for add and half, as well as the lemma (add_right):

add ?= (S ?<) ⇔ S (add ?= ?<)

The proof starts with an application of Ind, which adds the IH rewrite. Next, we apply Case to
obtain two sub-goals, where G is replaced with Z and S G ′ respectively; let us focus on the second,
more interesting sub-goal. Here, the rewrite rules R′′ include the original R plus the following IH,
which has been modified by Case:

half (add ?~ ?~) ⇔?~ | ?~ ≺ S G ′

The following sequence of Rewr application could be merged into a single step, but we split
them to separate lemma applications from reductions: the first step applies the lemma (add_right),
the second one applies two reductions, and finally the third step applies the IH to the sub-term
half (add G ′ G ′). The match substitution for this last rewrite is \ = [?~ ↦→ G ′], and so the IH’s
termination condition becomes G ′ ≺ S G ′, highlighted in red in the figure. Let us now discuss
termination checking in more detail.
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3.3 Checking Termination

Our proof system uses a simple yet surprisingly effective termination checking mechanism based
on two key ideas: (i) when the equation has multiple parameters, for each IH invocation, the
termination check only needs to consider those parameters that have been case-split on; (ii) for each
parameter, we use the substructure relation as the descreasing order. In the rest of this section, we
formally define the ≺ order used in the IH and prove that this order is well-founded, i.e. there is no

infinite descending chain"8 ≻ "1
8 ≻ "2

8 ≻ · · · .

Order on Terms. We start by defining an order on single terms, and then lift it to tuples of terms.

Definition 3.1. Given two terms" and # , we say that" ≺ # iff" is a strict subterm of # .

This order is obviously well-founded because" has a strictly smaller size than # .
This simple syntactic definition actually admits many useful proofs. As we have illustrated in

Fig. 6, this works because of the renaming trick performed by the Case rule: thanks to this trick, the
sub-term relation" ≺ # subsumes the more common condition that “" came out of a case split of
# ”, more formally: (i) # appears as the scrutinee in a prior Case, and" is one of the fresh variables
introduced in its premises, or (ii) transitively, there exists" ′ such that" ≺ " ′ and" ′ ≺ # .

Branch-wise Order on Tuples. Judgements in proofs typically contain more than one variable,
and requiring that all of them decrease is much too strict—that would preclude most proofs and
result in an ineffective proof system. Often, different IH applications decrease different variables,
like in the proof of ∀G,~ : Nat. add G ~ � add ~ G , where sometimes G decreases and sometimes ~
does.
A common way to lift a well-founded order to tuples is the lexicographic order, ≺lex, which

orders variables and compares them using ≺ in that order. However, this requires committing
a fixed variable order, which must be consistent across all uses of the IH in the proof. We find
this inconvenient for proof search since a choice of ordering made while exploring one branch of
the proof may preclude the use of the IH in another branch, leading to backtracking. Moreover,
sometimes, a single lexicographic order applicable to all branches might not even exist.

Example 3.2. Consider function dec in Fig. 7 (left). This function always returns True, but depend-
ing on x it does so by decreasing either y or z until it reaches a base case. We elide this proof (because
it has the exact same structure as its definition, except with IH invocations for every recursive call
to dec), but importantly, the proof not only demonstrates a case where the lexicographic ordering
of variables matters, it actually is a case where no such ordering exists. This is because the function
cases on x into two main branches: the first where y decreases while z increases, and second where
the opposite happens.

We propose a more robust method to lift ≺ to tuples, which we call a tree order.

Definition 3.3 (Case tree). Given a tuple of datatypes 38 , a case tree is a tree whose nodes are
labeled with indexed variables a8 , and where children of a node a8 are labeled with constructors of
38 . A case tree C has a root C .root and a map of labeled children C .children = {: ↦→ C ′, . . .}.

Example 3.4. Given the tuple ⟨Nat, Nat, Nat⟩—for example, representing the variables of dec from
Example 3.2—one possible case tree is shown in Fig. 7 (right), described by C = {root:a0, children: {Z ↦→
{root:a1, children:∅}, {S ↦→ {root:a2, children:∅}}.
In general, a case tree need not have distinct variables in all the nodes; for example, if we replaced

all occurrences of a1 in C with a2, it would still be a valid case tree, but the order it induces would
coincide with the lexicographic order ⟨a0, a2⟩.
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0 dec :: Nat → Nat → Nat → Bool

1 dec x y z = case x of

2 Z → case y of

3 Z → True

4 (S y') → dec x y' (S z)

5 (S x') → case z of

6 Z → True

7 (S z') → dec x (S y) S z'

a0

a1 a2

Z S

Fig. 7. (Le�) Definition of dec, a function that always (eventually) returns True. We will demonstrate that the

proof of this fact can be shown to terminate using a tree order. (Right) A case tree for the arguments of dec.

Definition 3.5 (Tree order). Given a case tree C , we define a relation ≺C ⊆
∏

38 ×
∏

38 between
tuples of terms as follows:

a 1

8 ≺C a
2

8 ⇐⇒ A 1 ≺ A 2 ∨
∨

(: ↦→C ′) ∈�

A 1
= A 2 ∧ is(:, A 1) ∧

(

a 1

8 ≺C ′ a
2

8

)

where A = C .root, � = C .children. The notation A 1, A 2 refers to the variable taken from the left-hand
side a 1

8 and right-hand side a
2

8 , respectively. is(:, a) is a predicate denoting that the discriminator of
a is the constructor : . Each variable a may only have a single constructor : ; formally, is(:1, a) ∧
is(:2, a) =⇒ :1 = :2.

Example 3.6. Given the case tree from Example 3.4 and two triples ⟨a 1

0
, a 1

1
, a 1

2
⟩ = ⟨Z, ~′, S I⟩ and

⟨a 2

0
, a 2

1
, a 2

2
⟩ = ⟨Z, S ~′, I⟩, we have ⟨a 1

0
, a 1

1
, a 1

2
⟩ ≺C ⟨a

2

0
, a 2

1
, a 2

2
⟩ because

a 1

0
≺ a 2

0
Z ≺ Z no

∨ a 1

0
= a 2

0
∧ is(Z, a 1

0
) ∧ a 1

1
≺ a 2

1
Z = Z ∧ is(Z, Z) ∧ ~′ ≺ S ~′ yes!

∨ a 1

0
= a 2

0
∧ is(S, a 1

0
) ∧ a 1

2
≺ a 2

2
Z = Z ∧ is(S, Z) ∧ S I ≺ I no

Similarly, for the triples ⟨a 1

3
, a 1

4
, a 1

5
⟩ = ⟨S G ′, S ~, I′⟩ and ⟨a 2

3
, a 2

4
, a 2

5
⟩ = ⟨S G ′, ~, S I′⟩, we have

⟨a 1

3
, a 1

4
, a 1

5
⟩ ≺C ⟨a

2

3
, a 2

4
, a 2

5
⟩. These two comparisons correspond to the two IH invocations neces-

sary to prove that dec always evalutes to True.

Theorem 3.7. The tree order ≺C is well-founded.

Proof. The proof is by induction on the structure of the case tree. If the tree is a leaf, its tree
order is simply the order on terms, which is well-founded. Now let the tree have a root A and

children {: ↦→ 2}, such that ≺2 is well-founded for all 2 . Suppose there is an infinite descending

chain "8 ≻ "1
8 ≻ "2

8 ≻ · · · . Note that the root term "A can never increase by definition of ≺C .

Hence, the chain must have an infinite suffix where the root term"
9
A does not change; but then, by

definition of ≺A , there exists a constructor : and a child : ↦→ 2 such that is(:,"
9
A ) ∧"

9
8 ≺2 "

9+1
8

holds for every 9 in the suffix, i.e. all elements of the suffix are ordered by ≺2 of the same child. This
is in contradiction to ≺2 being well-founded. This precludes the existence of the infinite descending

chain"
9
8 above. □

Checking Termination Locally using Tree Order. While more expressive than a lexicographic
ordering, the main benefit of tree order is that it allows checking termination locally in each branch
of the proof, while assuring that a consistent order relation can be constructed from the separate
branches. More concretely, consider an equation R; Γ ⊢ ! � ' with parameters G8 = vars(Γ).
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Consider one branch of the proof of this equation, where only some subset of the parameters have
been case-split on; let the tuple G 9 be these parameters in the order they were case-split on, and

let # 9 be the constructor terms they have been case-split into. Now if we apply the IH rewrite
with the match substitution \ , it is sufficient to check lexicographic ordering only on the case-split

parameters: ?G 9\ ≺lex # 9 . Although the subset and the order of the compared parameters might be
different in different branches, it is still sound, because we can assemble all these local checks into
a single global check wrt. a tree order whose case tree follows the case-split structure of the proof.

Example 3.8. Consider the proof of dec(G,~, I) � True, which first case-splits on G , and then on ~
in one branch and on I in another. Consider the branch [G ↦→ Z, ~ ↦→ S ~′] and an invocation of the
IH with match substitution [?G ↦→ Z, ?~ ↦→ ~′, ?I ↦→ S I]. This invocation is considered terminating,
despite the parameter ?I increasing, because in this branch we only need to check that ⟨?G, ?~⟩
decreases: ⟨Z, ~′⟩ ≺lex ⟨Z, S ~

′⟩.
Now consider a different branch, [G ↦→ S G ′, I ↦→ S I′] and an invocation of the IH with match

substitution [?G ↦→ S G ′, ?~ ↦→ S~, ?I ↦→ I′]. This invocation is also considered terminating because
in this branch we only need to check that ⟨?G, ?I⟩ decreases: ⟨S G ′, I′⟩ ≺lex ⟨S G

′, S I′⟩.
These two checks use different lexicographic orders, but they can be combined into a tree order by

a piecewise composition conditioned on ?G . For the tuple ⟨?G, ?~, ?I⟩, the appropriate well-founded
relation is ≺C shown in Example 3.6.

3.4 E-Graphs and Equality Saturation

For the purposes of this paper, the internal structure of the e-graph is not important; we simply
view an e-graph � as a collection of e-classes, and each e-class 2 as a (possibly infinite) collection of
terms. More formally, we assume the existence of the following operations on e-graphs:

• classes(�) is the set of e-classes in an e-graph �;
• terms(2) is the set of terms in an e-class 2;
• � ["] is a partial function that, given a term" , returns the e-class 2 such that" ∈ terms(2);

• eg("8 ) creates an e-graph that represents all the terms"8 in singleton e-classes;
• saturate(�,R) saturates the e-graph � with the rewrites R, i.e. applies the rewrites in R to
terms in �, until � contains all equalities induced by the rewrites.

These operations have the following properties:

• � ["] = 2 if and only if ∃2 ∈ classes(�)." ∈ terms(2);
• if � = eg("0, . . . , "=), then ∀8 ∈ 0..=.∃2 ∈ �.terms(2) = {"8 };
• if �′ = saturate(�,R), then ∀2 ∈ �.∃2′ ∈ �′ .terms(2′) =

{

" ′ | " →∗
R
" ′, " ∈ terms(2)

}

.

4 The Proof Search Algorithm

This section describes CCLemma’s proof search algorithm, which automatically finds derivations in
the proof system of Sec. 3 and also discovers auxiliary lemmas that are necessary to complete the
proof. Sec. 4.1 explains how the algorithm works at a high level and the following sections delve
into the details of each step.

4.1 Top-Level Algorithm

The top-level algorithm is shown in Fig. 8. The procedure Prove takes as input the top-level
equation to prove R0 ⊢ ! � '10 where the rewrites R0 contain reductions defining the functions
in Σdef and (optionally) any user-provided lemmas; the procedure returns Valid or Invalid if the
property is proven or disproven, or it might not terminate.

10In this section, we omit the type environment Γ from equations and goals to avoid notational clutter.
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Input: Equation R0 ⊢ !top � 'top
Output: Valid or Invalid

1: function Prove(R0 ⊢ !top � 'top)

2: �top← ⟨!top � 'top, IH(!top, 'top), eg(!top, 'top)⟩ ⊲ Top-level goal

3: G ← [�top] ⊲ Initialize proof state

4: R ← R0 ⊲ Initialize rewrites

5: while true do

6: � ← NextGoal(G) ⊲ Select next goal to work on

7: if � = ⊥ then return Invalid ⊲ No more active goals: return invalid

8: �.�← saturate(�.�,R +�.�� ) ⊲ Saturate the goal with rewrites and IH

9: if �.� [�.!] = �.� [�.'] then ⊲ Are LHS and RHS in the same e-class?

10: MarkSolved(G,�) ⊲ Mark goal solved

11: ! � '← ParentLemma(G,�) ⊲ Get the lemma this goal belongs to

12: if IsProven(G, ! � ') then ⊲ Are all lemma’s goals solved?

13: if (! � ') = (!top � 'top) then return Valid ⊲ Lemma is the top-level prop: return valid

14: R ← R + {! ⇔ '} ⊲ Add proven lemma to the rewrites

15: else

16: MarkInactive(G,�) ⊲ Mark goal inactive

17: G ← G + ConjConnectorLemmas(�,R) ⊲ Add connector lemmas as goals

18: G ← G + Case-Split(�) ⊲ Add case split goals

Fig. 8. The top-level proof algorithm.

The algorithm maintains a proof state G, which at a high level can be thought of as a worklist
of goals. A goal � = ⟨! � ', ��, �⟩ is defined by an equality ! � ', its inductive hypothesis �� ,
which is a conditional rewrite rule, and an e-graph �, which stores the already proven equalities.
We write �.! and �.' to denote the LHS and RHS of the equality, respectively. The proof state G
does some bookkeeping to keep track of the progress of each goal as well as the correspondence
between goals and the lemmas they relate to. Sec. 4.3 discusses the data structure behind G and the
bookkeeping in more detail.

The algorithm starts by creating a top-level goal �top from its input equation (line 2) and adding
it to the proof state (line 3). Here IH(!top, 'top) creates the IH rewrite as prescribed by the rule Ind
in Fig. 5. The goal’s e-graph is initialized to store the two sides !top and 'top of the input equation;
unless the two terms are syntactically equal, they are placed into two separate e-classes. Apart
from the proof state, the algorithm also maintains a global set of rewrites R, which is initialized to
R0 (line 4) and is updated as the algorithm discovers new lemmas.
In each iteration, Prove obtains a goal � from G and tries to solve it. G might determine (line

7) that no goals can make progress towards proving the top-level equation, in which case the
algorithm returns Invalid. Otherwise, the algorithm first saturates the goal � (line 8), and then
checks if the saturated goal is solved by Refl (line 9), i.e. if �.! and �.' are in the same e-class.

If the goal is solved, Prove marks it as such in the proof state (line 10). It then inspects the goal’s
parent lemma, which is the lemma this goal’s resolution (partially) entails. If all of the lemma’s
case-split sub-goals are now solved, the lemma is considered proven. If this lemma was in fact the
top-level equation, the algorithm returns Valid (line 13), and otherwise the lemma is added to R as
an unconditional bidirectional rewrite (line 14).
If the goal � is not solved, the algorithm marks it in G as inactive (line 16), and then uses it to

generate fresh active goals in G in two ways: it (1) conjectures connector lemmas from the e-graph
of � (line 17), and (2) case-splits � into sub-goals according to the rule Case from Fig. 5 (line 18);

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 264. Publication date: August 2024.



CCLemma: E-Graph Guided Lemma Discovery for Inductive Equational Proofs 264:15

Input: E-graph �, rewrites R

Output: A set of connector lemma goals G′

1: function ConjConnectorLemmas(�,R)

2: G′ ← [] ⊲ Initialize result

3: for ⟨21, 22⟩ ∈ classes(�) × classes(�) do ⊲ For all pairs of e-classes in �

4: if 21 ≠ 22 ∧ cvec(21) = cvec(22) then ⊲ whose c-vecs match

5: for ⟨"1, "2⟩ ∈ terms(21) × terms(22) do ⊲ For all pairs of terms in the e-classes

6: for ! � ' ∈ Generalize("1 � "2) do ⊲ Create an equation and generalize it into a lemma

7: if ¬Subsumed(! � ',G′,R) then ⊲ Unless the lemma is subsumed by those already added

8: G′ ← G′ + ⟨! � ', IH(!, '), eg(!, ')⟩ ⊲ Make a goal out of it

9: return G′

Fig. 9. The sub-routine for conjecturing connector lemmas.

each sub-goal inherits the e-graph of � , only replacing the match scrutinee with a constructor
application, hence it preserves all the previously proven equalities.

4.2 Conjecturing Connector Lemmas

As we explain in Sec. 2.3, the key insight behind our approach to lemma discovery is to only
consider connector lemmas—those that can merge two distinct e-classes in a (saturated) goal in our
proof state, and hence make some progress in the proof.
This step of the algorithm is described in the procedure ConjConnectorLemmas, shown in

Fig. 9. The procedure takes as input an e-graph � and a set of rewrites R (s.t. � is saturated wrt. to
R), and outputs a set of goals G′ corresponding to the connector lemmas of �.

The procedure begins (lines 3-4) by enumerating all pairs 21, 22 of e-classes in � that are annotated
with the same characteristic vector (c-vec); we discuss c-vecs in more detail below, but for now, it
suffices to say two e-classes with the same c-vec are likely to be equal, while two e-classes with
different c-vecs are definitely not equal. The algorithm then enumerates all pairs of terms"1, "2 in
21 and 22 (line 5); because the set of terms in an e-class may be infinite due to cycles in an e-graph,
the algorithm only considers terms up to a certain depth. The procedure then generalizes each
equation"1 � "2 into a set of lemmas ! � ' (with the original equation included), and adds them
to G′ unless they are subsumed by R.

Characteristic Vectors. CCLemma associates every e-class 2 in a goal’s e-graphwith a characteristic
vector cvec(2), which is a vector of values. Specifically, cvec(2) stores the result of evaluating the
terms in 2 given many different assignments of values to the variables of the goal. We refer the
reader to Fig. 4 in Sec. 2.3 for a concrete example of e-graph annotated with c-vecs. Importantly,
if two e-classes have different c-vecs, this serves as a counterexample to any lemma that equates
terms from those e-classes.
Although most theory exploration tools use counterexamples to prune obviously false lem-

mas, our implementation of counterexample generation—and the term c-vec—is borrowed from
Ruler [Nandi et al. 2021]. The key idea is to implement c-vec evaluation as an e-class analy-

sis [Willsey et al. 2021], which incrementally propagates the c-vecs through the e-graph bottom-up,
taking advantage of sharing to avoid re-computing the values of the same sub-terms multiple times.
Whenever a new goal e-graph � = eg(!, ') is created, where vars(!, ') = G8 , CCLemma generates
a random vector of # values for each variable G8 (in our evaluation, # = 30), and initializes each
cvec(� [G8 ]) with the corresponding vector. Thereafter, whenever new e-classes are created the
analysis automatically propagates the c-vecs through the e-graph.
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Generalization. When ConjConnectorLemmas enumerates a pair of terms"1, "2 from 21, 22,
it creates not only the lemma "1 � "2, which directly equates the two terms, but also a set of
generalizations of this lemma. This is important because"1 � "2 might not be easily provable. For
example, recall the goal from the proof of (half_double) in Fig. 4. Here, from the e-classes 21
and 22, we extract a connector lemma:

∀G : Nat. add G (S (S G)) � S (add G (S G))

While this lemma would be perfectly useful to us in proving the top-level goal, the issue is that the
lemma itself cannot be directly proven by induction, unlike its generalization (add_right) in which
the sub-term S G is replaced with a fresh variable:

∀G,~ : Nat. add G (S ~) � S (add G ~)

To construct the generalizations, function Generalize exhaustively considers all ways to replace
common sub-terms of"1 and"2 with fresh variables (including the trivial generalization, which
leaves"1 and"2 unchanged). This is a standard, if a little naïve

11, form of the generalization used
by goal-directed lemma discovery tools [Johansson 2019; Sonnex et al. 2012; Yang et al. 2019].

Subsumption. Finally, as ConjConnectorLemmas conjectures many lemmas at once, some of
themmight be subsumed by others. For example, assume that in the process of proving (half_double),
we have already proven—and added to R—the following lemma:

∀G : Nat. add G Z � G (right_zero)

Now consider a call to ConjConnectorLemmas that generates the following two candidate lemmas:

∀G,~ : Nat. add G (S ~) � S (add G ~) (4)

∀G,~ : Nat. add (add G Z) (S ~) � S (add (add G Z) ~) (5)

The first one is our old friend (add_right), while the second one is just a “fusion” of (add_right) with
(right_zero). We say that lemma ! � ' subsumes lemma !′ � '′ under the rewrites R if the latter
is derivable from the former using R, i.e. if ! →∗

R
!′ and ' →∗

R
'′. Intuitively, a subsumed lemma

is redundant: any time we would use lemma (5) in a proof, we could instead use (add_right) and
(right_zero). Hence, to cut down on the number of lemmas conjectured, ConjConnectorLemmas
only adds a lemma to G′ if it is not subsumed by any lemma already in G′.

Although filtering based on subsumption is not new—several theory exploration tools [Claessen
et al. 2013; Reynolds and Kuncak 2015] use it to avoid redundant lemmas—the EqSat-based archi-
tecture of CCLemma makes this check especially efficient and easy to implement. We add all sides

!, ' of the conjectured lemmas ! � ' to an auxiliary e-graph and saturate it with R. This reduces
our set of lemmas to a set of equivalence classes of lemmas, each class represented by an e-class 2!
from the auxiliary e-graph for its LHS and a corresponding e-class 2' for its RHS. By extracting the
smallest term from 2! and 2' , we pick a representative lemma for the entire class—and if 2! = 2'
we can ignore that lemma entirely as it is implied by R.

4.3 Goal Graph

We now explain how CCLemma tracks the progress of each goal and decides which goal to work
on next. Recall that procedure Prove (Fig. 8) operates on a proof state G. We implement G as a
data structure we call a goal graph. Fig. 10 shows an example goal graph constructed during the
proof of (half_double). The goal graph stores all generated goals and distinguishes between lemma

goals (blue)—which are the root goals of connector lemmas and the top-level proposition—and
sub-goals (gray)—created by case splitting. Edges in this graph track the origin of each goal. Note

11Other provers—such as [Sonnex et al. 2012]— use heuristics to prefer certain generalizations and avoid others.
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half (add x x) ≐ x

EGraph Sub-
Goals

Connector
Lemmas

[          ] [ ]

half (add Z Z) ≐ Z

EGraph Sub-
Goals

Connector
Lemmas

[ ] [ ]

half (add (S x') (S x')) ≐ S x'

EGraph Sub-
Goals

Connector
Lemmas

[ ][          ]

half (add x (S (S x))) ≐ S x

Not attempted yet

half (add (S Z) (S Z)) ≐ S Z

EGraph Sub-
Goals

Connector
Lemmas

[ ] [ ]

half (add (S (S x'')) (S (S x''))) ≐ S (S x'')

EGraph Sub-
Goals

Connector
Lemmas

[          ] [            ... ]

add x (S y) ≐ S (add x y)

Not attempted yet

#4

#6

#2 #3

#1

#5

#7

solved
active
inactive

Fig. 10. A depiction of the goal graph for (half_double). Each goal that has been a�empted has a label

corresponding to an e-graph in Fig. 3 or Fig. 4; Goal #4 is in neither figure and thus has a blank label. Some

goals are omi�ed for brevity.

that a lemma goal can have multiple incoming edges (i.e. the goal graph is not a tree), because the
same connector lemma can be extracted from different goals.
The goal graph maintains a proof status for each goal, which has three possibilities.

• Solved means the goal’s equation has been proven valid.
• Inactive means that this goal cannot currently make progress, and should not be attempted.
For example in Fig. 10, goal #5 is inactive because it has already been saturated and case-split,
so it should not be considered again until any of its children are solved.
• Active captures the goals that are worth trying, including newly generated goals (e.g., #6 and
#7) and previous goals whose children have been recently solved.

Every time a goal’s proof status changes, the goal graph will propagate the change according to
the rules below.

(1) A goal becomes solved if all its sub-goals are solved, which corresponds to an application of
Case in our proof system.
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(2) An inactive goal becomes active again if any of its child connector lemmas are solved, since
now we can apply the lemma to establish new equalities in the goal’s e-graph.

(3) An active goal becomes inactive if all of its parents are solved, since this goal cannot help
with any other unproven goals.

Example 4.1. In Fig. 10, once goal #6 is solved, goal #5 will be marked active by Rule (2). Then, if
goal #5 is solved (say, using goal #6 as a lemma), other children of #5 (e.g., goal #7) will be marked
inactive by Rule (3). On the other hand, goals #3 and #1 will be marked solved by Rule (1), at which
point the top-level proposition is proven.

Prove (Fig. 8) initializes G with a single active goal, which corresponds to the top-level proposi-
tion (Line 3). In each iteration, Prove interacts with the goal graph as follows.

• NextGoal(G) selects the next active goal from the goal graph. When multiple active goals
exist, we select the smallest one (in terms of AST size); this size heuristic is popular in theory
exploration [Claessen et al. 2013], because it prioritizes more general lemmas. For example,
in Fig. 10, between goals #6 and #7, we will select the smaller (and more general) goal #6,
which happens to be the one we can actually prove directly.
• MarkSolved(G,�) andMarkInactive(G,�) mark the goal� as solved or inactive, respec-
tively, and propagate this status change through the graph, according to the rules above.

4.4 Implementation and Extensions

We implemented CCLemma in Rust, using the egg e-graph library [Willsey et al. 2021]. In this
section we discuss some interesting implementation details and extensions to the core algorithm.

Destructive Rewrites. The key property of EqSat is that its rewrites are non-destructive: upon
applying a rewrite to a term " , the rewritten term " ′ and the original term " are both in the
e-graph. This property allows EqSat to avoid backtracking search, since no information is ever
lost. Unfortunately, it also meant that goal e-graphs can grow quite large, blowing up the number
of candidate connector lemmas and slowing down the proof search. To mitigate this issue, we
leverage an observation from the CycleQ prover [Jones et al. 2021] that, unlike lemma rewrites,
reduction rewrites can be always applied eagerly, without backtracking and without sacrificing
completeness. Based on this observation, we modify EqSat to support both destructive and non-
destructive rewrites. CCLemma applies all reductions destructively, removing the e-nodes matched
by these rewrites from the goal’s e-graph, and hence keeping the e-graph size under control.

Blocking Variables. As discussed in Sec. 2.2, EqSat helps us decide when to case split a goal, but
not which variable to case split on. In principle, redundant case splits need not hurt completeness:
they only hurt efficiency by making the goal graph larger. There is a subtlety, however, related to
our termination check (Sec. 3.3): because each IH invocation must decrease the tuple of already-
case-split variables, the order of case splitting in fact does matter for completeness in our system.
For example, to find the proof in Example 3.2 we must case split x first; otherwise, we would require
the decrease of one of y or z across all branches, which is not possible because there is always a
branch in which one of the two increases.

To avoid these kinds of redundant case splits, we use a common trick [Jones et al. 2021; Singher
and Itzhaky 2021; Sonnex et al. 2012] of only case-splitting on variables that are currently blocking

a rewrite. For example, if a term add G ~ appears in the goal’s e-graph, we will know to case split on
G and not on ~ (assuming that only rewrite rules we have for add are its reductions, add Z ?~ ⇒ . . .

and add (S ?G) ?~ ⇒ . . . ). To identify blocking variables in an e-graph, we analyze the LHSs of the
available rewrite rules and create custom patterns that search for blocked terms in the e-graph
(e.g. for add we would search for terms of the form add ?G ?~ | ?G is var). While the blocking
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variable heuristic does not completely prevent redundant case splits, it handles the common case
of accumulator parameters, which commonly increase in recursive calls but are also never blocking.

Conditional Properties. Many interesting equalities do not hold universally, but rather under
certain preconditions, such as

∀G,~ : Nat. isEven G � isEven ~ =⇒ isEven (add G ~) � True

We extend CCLemma to handle such properties by making two relatively straightforward changes:

(1) Since we get to assume that the precondition holds, we add its sides to the e-graph of the
top-level goal and merge their e-classes. In the example above, the e-graph of the top-level
goal (and hence, all its sub-goals) will store isEven G and isEven ~ in the same e-class.

(2) Since we need to check that the precondition holds before we can apply the IH, we add a
new condition to the IH rewrite (in addition to the termination check). In the example above,
before applying the IH to isEven (add G ′ ~′), where G = S G ′ and ~ = S ~′, we will check that
the terms isEven G ′ and isEven ~′ are in the same e-class.

Guard Spli�ing. Consider, the following equation:

∀G : Nat. if isEven G then Z else Z � Z

Proving this property should be simple (it in fact does not even require induction!), but our base
algorithm from Fig. 8 cannot prove it on its own. The problem here is that the evaluation of the
conditional is blocked, and no amount of case splitting on G can unblock it.
Since if-then-else conditionals are very common, we introduce a special heuristic to handle

them, which allows case-splitting on the guard of a conditional, even if the guard is not a variable. To
this end, whenever a goal contains a blocked conditional, the algorithm adds a fresh boolean variable
to the e-class of its guard: in the example above, it would add a variable 60 to the e-class containing
isEven G . When a later proof step case-splits on 60, it will produce two subgoals corresponding to
the cases when isEven G = True and isEven G = False, both of which are easily discharged.
Both conditional properties and guard splitting can generate vacuous goals, i.e. goals with

contradictory assumptions. CCLemma discharges such goals via an e-class analysis that detect that
an e-class contains two different constructors of the same datatype.

5 Evaluation

We evaluate CCLemma by comparing its performance on a diverse set of benchmarks to three
state-of-the-art theory exploration tools along the following dimensions:

RQ1) Effectiveness. How many properties can CCLemma prove (Sec. 5.2)?
RQ2) Efficiency. How quickly can CCLemma prove properties (Sec. 5.3)?

We have released an accompanying artifact containing CCLemma, the tools we compared against,
as well as instructions and scripts for running our evaluation [Kurashige et al. 2024].

Baseline Tools. We compare CCLemma against three state-of-the-art theory exploration tools:
HipSpec [Claessen et al. 2013], CVC4 [Reynolds and Kuncak 2015], and TheSy [Singher and Itzhaky
2021]. We chose to include HipSpec and CVC4 because they are widely used, and TheSy because it
is recent and also uses e-graphs. A more detailed comparison of these tools is provided in Sec. 6.
Note that we are using the version of CVC4 that comes with the publication [Reynolds and Kuncak
2015], and not the more recent CVC version 5, because in our preliminary experiments we found
that CVC5 was less competitive on lemma discovery benchmarks.
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Table 1. Benchmark suite statistics and comparison of the number of properties proved by each tool. Props

is the total number of properties in the benchmark suite, Avg vocab is the average vocabulary size of the

properties in the suite. Proved is the number of properties proved by each tool, Them only and Us only is

the number of properties proved by the baseline tool and not CCLemma and vice versa.

Benchmark Props Avg Tool Proved Them Us

vocab only only

IsaPlanner 87 7.3 CCLemma 75 - -

(easy) HipSpec 77 4 2

CVC4 67 3 11

TheSy 44 1 32

CLAM 50 6.2 CCLemma 38 - -

(medium) HipSpec 38 6 6

CVC4 22 3 19

TheSy 34 7 11

Optimization 96 30.5 CCLemma 28 - -

(hard) HipSpec 11 0 17

CVC4 18 5 15

TheSy 6 0 22

Experiment Setup. We ran all the tools on a server with Intel Xeon X5660 CPU, RAM limit of
16GB, and a time limit of 60 seconds per property. We ran all baseline tools using the settings from
their respective evaluations; for CVC4, we ran the version that does not use a native SMT encoding
of integers, which puts it on a more equal footing with the other tools.

5.1 Benchmarks

We perform our evaluation on three benchmark suites of varying levels of difficulty, summarized
on the left size of Tab. 1. The first two of them, IsaPlanner and CLAM, are standard benchmarks for
automated equational reasoning; the third one, Optimization, is a new, more challenging, benchmark
we constructed from the domain of program optimization.

IsaPlanner. The IsaPlanner benchmark [Dixon and Fleuriot 2003] consists of 87 equational prop-
erties over Nats and Lists. This benchmark is relatively simple because most of its properties are
in fact provable without auxiliary lemmas. We consider IsaPlanner as a sanity check for whether
CCLemma can handle simple inductive proofs.

CLAM. The CLAM benchmark [Ireland and Bundy 1996] is a more challenging dataset, specifically
targeting lemma discovery. To focus on this goal, we consider a subset of the original CLAM dataset,
only including the 50 properties (out of 86) that require auxiliary lemmas.12

Optimization. To go beyond simple properties of inductive data types (like (half_double)), we
curate a new, more challenging benchmark suite from the domain of program optimization. To
construct this dataset, we collect pairs of reference programs and their optimized versions from
the literature on fusion [Bird 1989; Gill et al. 1993; Hu et al. 1997; Wadler 1988] and program

synthesis [Bird and de Moor 1997; Farzan et al. 2022; Ji et al. 2024]. For each pair, we construct an
equation between the two programs. Since CCLemma only supports algebraic datatypes, while

12The properties we use are referred to as T1-T35, T48-T50, and G1-G12 in [Ireland and Bundy 1996]. Several past evaluations

(such as in [Claessen et al. 2013]) were on T1-T50; we draw attention to this difference because the total number of properties

is the same, but 12 properties differ between these two evaluations.
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many of the original problems are over integers, we encoded all integer expressions into Nats and
exclude all tasks that cannot be meaningfully encoded (such as those involving subtraction and
large integer constants). This results in a benchmark suite of 96 properties, one of which is our
motivating example of mtp from the introduction. These tasks are challenging for theory exploration
because they have a much larger vocabulary (i.e. the set of functions and constructors used) than
the IsaPlanner and CLAM benchmarks: as you can see in Tab. 1, the average vocabulary size of the
Optimization properties is 30.5, compared to 7.3 and 6.2 for IsaPlanner and CLAM, respectively.

5.2 RQ1: Effectiveness

The right side of Tab. 1 compares the total number of properties proved for CCLemma vs the
baselines across all the benchmarks.

On the simpler datasets, IsaPlanner and CLAM, CCLemma and HipSpec do similarly well. TheSy
struggles with IsaPlanner, which is understandable: TheSy’s strength is in theory exploration—
which often does not help on these benchmarks—while its inductive prover is relatively naïve and,
for example, does not support guard splitting. Surprisingly, CVC4 does worse than the rest of the
tools on CLAM, for which we do not have a good explanation.
HipSpec and TheSy’s undirected approach to theory exploration comes to a head in the Opti-

mization benchmark, which have a much larger vocabulary. Both tools prove significantly fewer
properties than CCLemma: 11 and 6, respectively, compared to CCLemma’s 28. CVC4 clearly outper-
forms both TheSy andHipSpecwith 18 properties; we attribute it to the fact that CVC4’s exploration
is more goal-directed thanks to their active conjecture pruning (see Sec. 6). Nevertheless, CCLemma
proves 10 more properties than CVC4, more than a 50% increase. Finally, we note that none of the
four tools are able to prove more than 30% of the Optimization properties, which is a testament
to the difficulty of this benchmark; consequently, we hope that our new dataset will be useful for
evaluating future theory exploration tools.

5.3 RQ2: Efficiency

Fig. 11 shows how many properties each tool can solve (y-axis) given a fixed time out for each
property (x-axis). Because IsaPlanner and CLAM have many properties that can be proven in under
a second, we zoom in these two plots to provide better resolution on the sub-second time range.
Sub-second performance is important if a prover is to be used inside a compiler optimization pass,
or for auto-completion within an interactive theorem prover.
As we can see from the plot, CCLemma is consistently the fastest across the three domains,

proving most of CLAM benchmarks in under a second, and most of the IsaPlanner benchmarks in
milliseconds. HipSpec is consistently the slowest to get started (although it eventually catches up
to CCLemma on IsaPlanner and CLAM); this is not surprising, because HipSpec first generates a
large number of lemmas and filters them using randomized testing, before sending the remaining
lemmas to an external prover.

5.4 Discussion

At the end of this section, we discuss specific properties where CCLemma’s goal-directed approach
shines and those where it struggles.

Benefits of Goal-Directedness. CCLemma’s goal-directedness wins the day when the space of
candidate lemmas is too large. For example, functions like mult, fac (multiplication and factorial,
respectively in Peano arithmetic) are themselves defined in terms of other functions which increases
the search space of possible lemmas significantly. In their evaluation, HipSpec has to apply heuristics
limiting size to prune the lemma search space. For some CLAM properties (T33-T35, G10-G12)
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Fig. 11. Properties proved by each tool over time, one plot per benchmark suite. Because many properties are

provable in a short period of time for the IsaPlanner and CLAM benchmarks, we adjust the time scale to be

from 0-1s on the first half of their plots and 1-60s on the second.

HipSpec limits the size of considered lemmas as otherwise the space of candidate lemmas is too
large to handle. For example, consider the property G11 from CLAM

∀G,~ : Nat.mult G ~ � qmult G ~ Z

which relates the natural definition of multiplication to an accumulator-based multiplier. Given
additional time, HipSpec can actually prove this property, but takes well over 60 seconds and proves
28 lemmas in the process. TheSy did not prove it within the same time; we timed it out after about
120 seconds. CCLemma, proves this property in less than a second using only 2 lemmas that it
proves; CVC4 too—owing to its hybrid design—is able to prove it, albeit after around 15 seconds.

Benefits of Theory Exploration. While CCLemma’s goal-directed nature gives it an overall ef-
ficiency advantage over theory exploration (HipSpec and TheSy), it is incomplete, and hence
sometimes fails to prove properties where the lemmas cannot be conjectured or generalized from
sub-terms. For example, consider the property T31 from CLAM (whose definitions are shown in
Fig. 12), which TheSy and HipSpec both prove in a matter of seconds, but CCLemma cannot prove:

∀GB : List a. qrev (qrev GB Nil) Nil � GB

This property is essentially the same as T10 (rev (rev GB) � GB)—which CCLemma can prove—but
uses qrev (an accumulating version of rev).
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data List a = Nil | Cons a (List a)

qrev :: List a → List a

qrev xs acc = case xs of

Nil → acc

Cons x' xs' → qrev xs' (Cons x' acc)

Fig. 12. Inductive datatype and function definitions for CLAM property T31.

HipSpec and TheSy both quickly enumerate and prove the lemma

∀GB,~B List 0. qrev (qrev GB ~B) Nil � qrev ~B GB

as this lemma is small. This lemma trivially implies the original goal when applied to its LHS.
While CCLemma can prove the above lemma, it cannot find it. This is because CCLemma’s

primary means of conjecturing connector lemmas is to use evaluation to yield new terms (and thus
new candidates for connector lemmas) after case splitting a variable. Case splitting GB = Cons G ′ GB′

yields the evaluation

∀G ′ : 0. GB′ : List 0. qrev (qrev GB′ (Cons G ′Nil)) Nil � Cons G ′ GB′

But CCLemma cannot evaluate the inner qrev further – and it cannot evaluate the outer qrev at
all. Further case splitting GB′ would accumulate more values onto the second argument of qrev,
but that does not allow for CCLemma to conjecture any interesting or useful connector lemmas.
Even clever applications of the IH (e.g. to GB′) cannot get us out of this bind, and without a way to
evaluate we cannot add interesting terms to conjecture lemmas with.
Interestingly, we observe that if CCLemma were capable of “unevaluating” the RHS from GB to

qrev Nil GB , then it would have a chance at finding the necessary lemma by generalizing two of the
Nils in the connector lemma

∀GBList 0. qrev (qrev GB Nil) Nil � qrev Nil GB

“Unevaluation,” however, is still incomplete when functions are not one-to-one and CCLemma’s
generalization mechanisms are too naïve to partially generalize. Both are interesting subjects for
future work and offer ways of overcoming (although not fully) its incompleteness.

6 Related Work

Inductive reasoning and lemma discovery have a rich history, so we necessarily narrow our focus,
considering only automated provers for equational reasoning. Specifically, we leave out lemma
discovery for most interactive theorem provers [Heras et al. 2013; Sivaraman et al. 2022], as well
as non-equational logics, such as first-order logic [Cruanes 2017; Hajdú et al. 2020; Hajdu et al.
2021; Murali et al. 2022; Reger and Voronkov 2019] and separation logic [Enea et al. 2015; Ta et al.
2017]. These tools are not directly comparable to equational inductive provers like CCLemma: while
equational provers dedicate the bulk of their proof search to discovering nontrivial uses of induction,
first-order and separation logic provers focus on nontrivial reasoning in the corresponding logics,
while keeping the uses of induction relatively simple.

6.1 Lemma Discovery for Equational Reasoning

According to the extensive survey by Johansson [2019], lemma discovery for equational reasoning
can be broadly divided into two categories: goal-directed and theory exploration.
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Goal-Directed Lemma Discovery. Zeno [Sonnex et al. 2012] discovers lemmas by common-
subterm generalization. Two things make it effective as a prover despite lacking more complicated
heuristics or complete methods for lemma discovery: (1) Through a blocking term analysis that
accounts for control flow, Zeno determines when it needs to perform induction, case splitting, or
generalization. (2) Zeno’s method of performing induction allows it to create conditional lemmas.
This allows it to prove some properties (such as T14 from CLAM) that none of the provers we
benchmarked can because they require conditional lemma synthesis, a traditionally tricky problem.
Despite these strengths, Zeno is ultimately hindered by its inability to discover lemmas that aren’t
generalizations of the top-level goal and it ultimately performs poorly on benchmarks like CLAM
compared to other provers (even though it can prove a property no others can).

Like Zeno, sem_ind [Nagashima 2021] observes that one of the major branch points for provers
is induction, where they must choose both the variable to induct upon and whether to generalize
the goal. It attempts to make this step simpler by enumerating induction and generalization steps,
then (1) filtering them based upon plausibility and (2) ranking them according to several heuristics.

IsaPlanner [Dixon and Fleuriot 2004], and OYSTER-CLAM [Ireland and Bundy 1996] (the latter
being the originator of the CLAM dataset) are both capable of using more complicated heuristics
for lemma discovery. These provers utilize a technique known as rippling, whose chief insight is
that most inductive proofs need to apply the inductive hypothesis to succeed. When rippling fails
to bring about an IH application, these provers will try to compute lemmas that will allow for the
IH to be applied. While effective in some cases, rippling ultimately as a heuristic is not broadly
applicable enough to be generally useful [Johansson 2019].

Imandra [Passmore et al. 2020], which takes significant inspiration from Boyer-Moore provers
such as ACL2, is an interactive prover which uses the waterfall approach discussed in [Johansson
2019] to automate proofs. It uses bounded verification (similar to our characteristic vector checks) to
first filter out invalid proof candidates, and then applies a variety of tactics such as generalization
to produce additional goals which are recursively proven. Even though it is capable of complicated
proof reasoning (such as the generation of conditional lemmas), Imdara is not fully automatic and
requires user guidance for most nontrivial proofs.

Theory Exploration. HipSpec [Claessen et al. 2013] generates lemmas via bottom-up term enu-
meration and verifies them using an SMT solver. Key to its efficacy are two powerful pruning
techniques: (1) counterexample finding to filter out obviously invalid lemmas, and (2) congruence
closure to filter out redundant lemmas. We borrow both of these pruning techniques from HipSpec,
but we implement them using equality saturation and e-class analysis.

Reynolds and Kuncak [2015] implement an inductive prover with theory exploration inside the
CVC4 SMT solver. Their theory exploration algorithm is similar to HipSpec’s, except that they
add a third pruning technique based on active conjectures. At a high level, CVC4 won’t propose a
lemma unless one of its sides matches a term in the current context that contains a variable from
one of the currently unsolved goals; similarly to our connector lemma idea, this restricts candidate
lemmas to those applicable to the proof, but only one side of the lemma is restricted.13

Similarly to CVC4 and CCLemma, AdtInd [Yang et al. 2019] strives to generate lemmas that can
apply to the current proof. Unlike CCLemma, AdtInd explicitly creates a grammar out of proof
terms and uses it to enumerate lemmas. However, without strong guidance from the user in the
form of lemma templates that it uses to reduce its search space, AdtInd faces the same general
problem of theory exploration: scaling. In practice, it has to use heuristics to prune its on-the-fly
lemma theorization to keep the number of considered lemmas down—even with user guidance.

13Note also, that because HipSpec and CVC4 rely on SMT solving, they might not be able to produce externally checkable

proofs, while CCLemma can produce such proofs using the explanation mechanism in egg [Willsey et al. 2021].
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AdtInd, as well as the TBC [Nagashima et al. 2023] prover, leverage lemma templates to signifi-
cantly cut down on lemma enumeration space. In the case of TBC, these are a predefined set of
general mathematical properties which the authors demonstrate often are useful if proven. In the
case of AdtInd, these templates are user-provided, although the authors include several in their
evaluation which they observed were helpful.

Theory Exploration with E-Graphs. Two closest techniques to ours, although in different ways,
are TheSy [Singher and Itzhaky 2021] and Ruler [Nandi et al. 2021].
TheSy is a theory exploration tool, which is similar to HipSpec but uses semi-concrete values

to prune the lemmas instead of concrete values. Like CCLemma, TheSy also uses e-graphs, but
for the primary purpose of conjecturing lemmas more efficiently than full, naïve enumeration.
From TheSy we got the idea to do inductive proofs with EqSat by alternating saturation and case
splitting; TheSy’s proof search, however, has a simplistic case-splitting strategy: it only case-splits
once, on a single variable. CCLemma expands on this idea by adding a more sophisticated case
splitting strategy based on blocking variables, and a novel termination check that works well with
this strategy and with EqSat-based proof search.

Ruler is an e-graph based theory exploration tool, but for theories that do not require induction.
From Ruler, CCLemma borrows the idea of using c-vecs to implement the counterexample finding.

6.2 Termination Checking

We are not aware of any literature that uses exactly the same technique as CCLemma for termination
checking. Focusing on termination checking for structural induction on datatypes, rather than
general induction using, e.g., integers, we find two categories: a global lexicographic termination
check per proposition is used in, e.g., dependently-typed languages [Idris Team 2024; Moura
and Ullrich 2021; Norell 2007], and the more general automata-theoretic criteria used in cyclic
proofs [Jones et al. 2021; Rowe and Brotherston 2017] and size-change termination [Lee et al. 2001].
Our technique may be seen as a simple generalization of a the commonly-used lexicographic

termination metric, allowing for more flexibility in how induction is done in different branches of a
case-split. The automata-theoretic conditions used in cyclic proofs are more general, and thus also
more expensive to compute. They are also global—in order to check soundness of one use of the
inductive hypothesis, we must first complete the whole proof tree. By contrast, our termination
metric is local, allowing us to immediately reject unsound uses of the induction hypothesis.

We find our termination check to be a nice intermediate between these two approaches, allowing
more flexibility than lexicographic ordering while being less expensive than the automata-theoretic
check. Although the latter is more general, we conjecture that our criterion is just as good in the
following sense: for any inductive proof which passes the automata-theoretic check, we conjecture
that it can be “unrolled” into a longer inductive proof which passes our simpler soundness check.
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