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Dynamic programming is an important optimization technique, but designing efficient dynamic program-

ming algorithms can be difficult for even professional programmers. Thinning, a technique developed for

systematically deriving efficient dynamic programming algorithms, has received much attention in studies

because of its effectiveness for a large class of problems. Despite the success of thinning in theory, its practical

usage is still limited because (1) applying thinning requires mathematical and algorithmic background, and (2)

applying thinning solely may not be enough to generate algorithms as efficient as proposed by human experts.

In this paper, we propose two approaches, MetHyl and MetHyl+, to resolve both problems. First, MetHyl
automates the application of thinning via program synthesis, and thus eliminates the burden to the user for

applying thinning. Second, MetHyl+ integrates three rules into MetHyl that optimizes three important factors

on the time complexity of dynamic programming algorithms that are ignored by thinning, and thus make it

able to automatically generate expert-level dynamic programming algorithms on many tasks.

We evaluate our approaches on 37 tasks related to 16 optimization problems collected from Introduction to
Algorithm, a popular textbook for algorithm courses. The results show that MetHyl+ achieves exponential
speed-ups on 97.3% tasks with an average time cost of less than one minute. Moreover, MetHyl+ generates
algorithms that are as efficient as the reference programs provided by human experts on 70.3% tasks.

1 INTRODUCTION
Combinatorial Optimization is a topic on finding an optimal solution from a finite set of valid

solutions [Schrijver 2003]. Combinatorial optimization problems (COPs), such as the knapsack

problem and the traveling salesman problem, widely exist in various domains. Solving a COP is

usually difficult as the number of valid solutions can be extremely large.

Dynamic programming is an important technique for solving COPs. A dynamic programming

algorithm can be implemented in the top-down approach or the bottom-up approach, where the

top-down approach is also known as memoization. Given a recursive function, memoization can

be easily implemented by caching the results of existing calls. Though obtaining an arbitrary

memoization algorithm is trivial, different memoization algorithms could have huge performance

differences. Designing an efficient memoization algorithm for a specific problem is difficult and

takes algorithmic efforts.
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Motivated by the importance and difficulty of designing efficient memoization, many approaches

have been proposed for systematically transforming a plain program into an efficient memoization

algorithm. In this paper, we consider one important approach among them, namely thinning [Bird

and de Moor 1997]. Thinning transforms a plain program specified by a recursive generator, which

generates all valid solutions, and an objective function, which evaluates the objective value for

each solution, into a more efficient program that does not consider most solutions. By previous

studies [Bird 2001; Bird and de Moor 1997; de Moor 1995; Morihata 2011; Morihata et al. 2014; Mu

2008; Sasano et al. 2000], thinning can derive efficient memoization for a large class of COPs.

However, despite the success of thinning in theory, its help to average programmers is still

limited because of two shortages. First, grasping the usage of thinning requires mathematical and

algorithmic background. On the one hand, the formal definition of thinning is highly abstracted

and involves concepts in the category theory. On the other hand, thinning requires the user to

provide a proper preorder on solutions, and in many cases, finding such a preorder is non-trivial

and relies on algorithmic intuitions. Therefore, learning and using thinning are both difficult for

most programmers.

Second, though thinning can generate efficient memoization algorithms for many COPs, applying

this approach solely is usually not enough to achieve an algorithm that is as efficient as the one

proposed by human experts. In our evaluation, the time complexity of the memoization derived by

thinning is asymptotically larger than the reference solutions on 34/37(91.9%) tasks in our dataset.

In this paper, we make two contributions to resolve these shortages respectively. For the first

shortage, to remove the burden from the user, we show that the application of thinning can be fully

automated via program synthesis. The first contribution of this paper is a fully automated approach
for thinning, namely MetHyl. MetHyl treats the application of thinning as a program synthesis task

for the preorder and follows the framework of programming-by-example [Shaw et al. 1975]. Given

a recursive generator, an objective function, and several concrete instances of the COP, MetHyl
extracts a set of examples for the preorder according to the theory of thinning, where each example

specifies that the effectiveness of one solution is not dominated by another. MetHyl synthesizes a
valid preorder from the examples via a novel synthesis algorithm, and then automatically generates

an efficient memoization algorithm by thinning with the synthesized preorder. To use MetHyl, the
user needs neither to find out a proper preorder him/herself nor to learn anything about thinning.

In this way, the difficulty of using thinning in practice is greatly reduced.

We implement MetHyl and evaluate it on 37 tasks collected from Introduction to Algorithm [Cor-

men et al. 2009], a popular textbook for algorithm courses. The results show that (1) MetHyl
successfully synthesizes a preorder for thinning on 36/37(97.3%) tasks with an average time cost

of 4.21 seconds, and (2) the program generated by MetHyl achieves exponential speed-ups against
the plain program on 31/37(83.8%) tasks. As mentioned before, we also compare the results of

MetHyl with the reference solutions to COPs in Introduction to Algorithm provided by Cormen

et al. [2009] and Li [2011]. The results demonstrate the gap between thinning and human experts:

MetHyl achieves the same time complexity as the reference solution on only 3/37(8.1%) tasks.
For the second shortage, to further improve thememoization generated byMetHyl, we analyze the

time complexity of memoizing a recursive generator and show that it is determined by four different

factors: (1) the number of solutions returned by the generator, (2) the time cost of constructing

solutions from the recursive results, (3) the number of memoized search states, and (4) the time cost

of constructing recursive search states from the current one. The main shortage of thinning is that

it focuses only on the first factor, while a human expert can make a comprehensive optimization

on all four factors. Therefore, we also consider the other three factors. The second contribution of
this paper is three other rules and their automation for the remaining three factors.
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• For the second factor, to reduce the time cost of constructing solutions, our rule replaces the

solutions in the plain program, which usually involves inductive data structures, into a tuple

comprising a small number of scalar values while keeping the behavior unchanged. In this

way, the time cost is greatly reduced, as manipulating a tuple is usually much faster than an

inductive data structure.

• For the third factor, to reduce the number of memoized search states, our rule requires a

proper equivalence relation over search states and optimizes by skipping those search states

of which an equivalent search state has been memoized before.

• The rule for the fourth factor is similar to the rule for the second factor. It reduces the time

cost of constructing search states by replacing them with tuples.

Similar to thinning, the automation of these rules also involves program synthesis and follows the

framework of programming-by-example. In theory, we show the effectiveness of these three rules:

Under certain assumptions, thinning and the three rules together are guaranteed to reduce the time

complexity of the input program to pseudo-polynomial.

We integrate these rules into MetHyl as MetHyl+ and evaluate it on our dataset. The results

demonstrate that the improvement brought by the three rules is significant. First,MetHyl+ achieves
exponential speed-ups on 36/37(97.3%) tasks with an average time cost of 59.2 seconds. Second, on
26/37(70.3%) tasks, MetHyl+ achieves the same time complexities as the reference solutions.

2 OVERVIEW
In this section, we introduce the main ideas of thinning, MetHyl, and MetHyl+ using a classical

COP namely 0/1 knapsack [Mathews 1896].

Given a set of items, each with a weightwi and a value vi , put a subset of them in a
knapsack of capacityW to get the maximum total value in the knapsack.

For example, xs = [(3, 3), (2, 2), (1, 2)],W = 4 describes an instance of 0/1 knapsack, where three

items are available, their weights are 3, 2, 1 respectively, their values are 3, 2, 2 respectively, and
the capacity of the knapsack is 4. At this time, the optimal solution is to put the first and the third

items, i.e., [(3, 3), (1, 2)], where the value sum is 5.

In this section, we assume that the number of the items (i.e., |xs |) and the capacity (i.e.,W ) are

on the same magnitude, denoted by O (n). At this time, there is a standard dynamic programming

algorithm for 0/1 knapsack, which runs in O (n2) time.

2.1 Problem Specification and Memoization
To formally describe a COP, we need to specify (1) the set of valid solutions, and (2) the objective

value of each solution. In a natural specification of 0/1 knapsack, the set of valid solutions is all

subsets of items whose total weight is within the capacity, and the objective value is the total value

of items in the subset.

In this paper, we assume these two parts are specified by two programs д and o respectively.

• The generator д takes the parameters of the problem (in this case, the list of items) as the

input and generates all valid solutions for the problem.

• The scorer o is an objective function that maps each solution to its objective value.

The code in Figure 1 shows one such specification (д,o) for 0/1 knapsack. The parameter д of
function д is itself to enable recursion later with a fixed-point combinator and the parameter xs is
the list of items. Functions sumw and sumv are used to calculate the sum of weights and values for a

list of items, respectively. Given a fixed-point combinator fix, fix д exhaustively returns all sublists

of items whose total weight is within the capacity, and o calculates the total value of items. For
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д = λд.λxs . if |xs | = 0 then [[]]

else (д (tail xs )) ++
[
(head xs ) :: p ��� p ∈ д (tail xs ),

(sumw p) + (head xs ).1 ≤W
]

o = λp.(sumv p)

Fig. 1. One specification (д,o) for 0/1 knapsack, where
W is a global variable representing the capacity.

m = λxs .xs

mem = λmem.λxs . if buffer[m xs] = ⊥ then

buffer[m xs]← дmem xs;

buffer[m xs]

proд = λxs .argmax o ((fixmem) xs )

Fig. 2. A template for transforming programs
(д,o) to a memoization algorithm.

simplicity, we shall directly use д to refer to the recursive version. Note that such a specification

may not be unique. Two other specifications for 0/1 knapsack can be found in Section 3.3.

We can easily construct a memoization algorithm for 0/1 knapsack from specification (д,o) via a
template shown in Figure 2. In this template,m is a function that returns a key for an invocation of

д. Two invocations have the same key only if their outputs are the same. Currently,m is the identity

function to trivially ensure this property. Functionmem implements the memoization algorithm

and buffer is a global map that stores the result for each key. Finally, proд returns the optimal

solution from all solutions. Here argmax o ps chooses the optimal solution in a list of solutions ps
based on the objective function o, and fix is a fixed-point combinator.

Though the template has effectively reused repeated invocations to д, the time complexity of

the generated algorithm is still exponential to the number of items. Compared to the standard

O (n2)-time algorithm for 0/1 knapsack, such a trivial memoization algorithm is unsatisfactory.

2.2 Thinning and Its Shortages
Before discussing the derivation of efficient memoization algorithms, we first introduce two nota-

tions for the convenience of presentation. To distinguish the input and the output of the outermost

invocation to д and recursive invocations, we call the input of an arbitrary invocation to д a search
state (or state), as an invocation represents a step in a depth-first search, and call the solution

generated by a recursive invocation to д a partial solution, as it is not a full solution yet.

The Main Idea of Thinning. The main reason for the ineffectiveness of the trivial memoization

algorithm is that the number of partial solutions returned by the generator д can be exponential

to the number of items, and memoization keeps this factor unchanged. Therefore, to generate an

efficient memoization algorithm, it is important to reduce the number of partial solutions.

Thinning, proposed by Bird and de Moor [1997], is such an approach. As shown in the following

program д′, to reduce the number of solutions returned by д, thinning inserts a special function
thin at the return point of д, which prunes off non-optimal solutions from those generated by д.

д′ = λд′.λxs .thin[R] (д д′ xs ) (1)

Function thin is parameterized by a preorder R over the space of solutions. Intuitively, thinning

requires preorder R to specify the domination between partial solutions: For any two partial

solutions (p1,p2), p1 is worse than p2 in the sense of R (written as p1Rp2) only if partial solution

p1 can never lead to the global optimal solution if p2 exists. Given preorder R and a set of partial

solutions P , thin[R] P returns one smallest subset of P such that all partial solutions in P are

dominated by partial solutions in this subset. According to the requirement to R, thin[R] removes

only those non-optimal partial solutions generated by д and does not affect the final result.

Let us take 0/1 knapsack and its specification (д,o) introduced in Figure 1 as an example. In this

case, a partial solution is a sub-list of some suffix of the full item list, and it will be completed to a

full solution by inserting some (possibly none) items to its front. Therefore, partial solution p1 is
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dominated by p2 if p1 not only consumes more capacity but also gains smaller value. At this time,

any full solution leaded by p1 can be improved by replacing items in p1 with p2. Such a relation can

be described by the following preorder R.

p1Rp2 ⇐⇒ (sumw p1 ≥ sumw p2) ∧ (sumv p1 ≤ sumv p2)

There are two noticeable properties of thin[R] that makes д′ (Equation 1) efficient.

• First, the number of partial solutions returned by thin[R], which is equal to the number of

solutions returned by д′, is bounded by the maximum outputs of sumw, which is at mostW .

• Second, there is an efficient implementation of thin[R] that invokes preorder R only linear

times, where the time complexity of R is linear to the size of partial solutions.

Therefore, the time complexity of memoizing (д′,o) is only O (n3), which is exponentially faster

than directly memoizing the specification (д,o). For simplicity, we do not go deep into thin[R] in
this section. A detailed discussion on thin can be find in Section 3.4, which shows that the efficiency

of thin[R] is related to the range of keys (in this case, sumw and sumv) involved in R.
The Shortages of Thinning. So far, we have successfully obtained a polynomial-timememoization

algorithm for 0/1 knapsack by applying thinning to a plain specification. However, our previous

discussion also exposes two crucial shortages of thinning.

First, thinning requires the user to provide a preorder that specifies the domination between

partial solutions. However, finding such a preorder is a non-trivial task and may rely on algorithmic

intuitions. In our example, to find a proper preorder for 0/1 knapsack, the user needs to recognize

and involve the comparison between the consumed capacity. Actually, the difficulty of finding such

a comparison is already close to directly proposing the standard dynamic programming algorithm

for 0/1 knapsack, which takes the consumed capacity as the state.

Second, applying thinning solely is not enough to achieve an algorithm that is as efficient as the

one proposed by human experts. In our example, there is still a gap between the result of thinning,

which runs in O (n3) time, and the standard O (n2)-time dynamic programming algorithm.

2.3 MetHyl: Automating Thinning via Programming-by-Example
For the first shortage, to remove the burden from the user, one natural way is to automate the

application of thinning. If a proper preorder can be found automatically, thinning can be treated

as a black-box, and thus applying it will not consume any user’s effort. In this paper, we propose

MetHyl, which efficiently synthesizes preorders for thinning via programming-by-example.

Specification for the Preorder. The thinning theorem proposed by Bird and de Moor [1997]

provides a formal characterization for the correctness of thinning. MetHyl takes this theory as the

specification and synthesizes the preorder from it.

The thinning theorem requires the generator to be specified as a (relational) hylomorphism,

a common template for recursions in functional programming. In a nutshell, a hylomorphism

specification for the generator comprises two separate functionsψ and ϕ.
First, ψ generate a set of transitions for a given state, where each transition includes several

(possibly none) sub-states for recursion and information used to construct solutions. For example,

ψ corresponds to the generator д in Figure 1 may return the following three transitions.

(1) An empty transition when the item list xs is empty.

(2) A direct recursion to state (tail xs ), representing that the first item is skipped.

(3) A recursion to (tail xs ) with information (head xs ), representing that the first item is chosen.

Second, ϕ constructs a set of solutions for each transition and each partial solution of sub-states.

For example, the following describes the ϕ corresponding to the generator д in Figure 1.

(1) For an empty transition, ϕ returns an empty list, representing an empty knapsack.
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(2) For a direct transition, given a partial solution of the sub-state, ϕ directly returns the partial

solution, representing that no item is added to the knapsack.

(3) For the last transition, given an item and partial solution of the sub-state, ϕ adds the item to

the partial solution when the capacity is enough, and otherwise returns noting.

Our approaches inherit the requirement on a hylomorphism-style generator from the thinning

theorem.We design a language for implementing such programs in Section 3.3 and discuss the effect

of this requirement on our approaches in Section 6. For simplicity, we leave the formal definition

of hylomorphism to Section 3.2 and still use functions to demo our approaches in this section.

The main advantage of introducing hylomorphism is that how a partial solution is constructed

from the partial solutions of sub-states is explicitly specified via function ϕ. Concretely, relation
p ↠s p ′, denoting that a partial solution p ′ of state s can be constructed from another partial

solution p, can be extracted from the invocations of ϕ. p ↠s p ′ holds if and only if there is an

invocation of ϕ in state s that takes p as the input and generates p ′.
The following lists all instances of this relation for 0/1 knapsack specified in Figure 1 when the

state xs is [(3, 3), (2, 2), (1, 2)] and the capacityW is 4.

[]↠xs [] []↠xs [(3, 3)] [(1, 2)]↠xs [(1, 2)] [(1, 2)]↠xs [(3, 3), (1, 2)]

[(2, 2)]↠xs [(2, 2)] [(2, 2), (1, 2)]↠xs [(2, 2), (1, 2)] (2)

In our example, to ensure the correctness, i.e., the equivalence between (д,o) (Figure 1) and
(д′,o) (Equation 1), the thinning theorem requires preorder R to satisfy the following conditions.

(1) The dominance specified by R is monotonic during the recursion. If partial solution p1 is
worse than p2 in the sense of R, all partial solutions generated by p1 must also be worse than

those generated by p2. Concretely, the thinning theorem requires the following condition to

hold for any two consecutive states xs and (tail xs ), any two partial solutions p1,p2 of state
(tail xs ), and any partial solution p ′

1
of state xs such that p1 ↠xs p

′
1
.

p1Rp2 → ∃p
′
2
∈ (д xs ),

(
p2 ↠xs p

′
2
∧ p ′

1
Rp ′

2

)
(3)

(2) Preorder R implies the order of the objective value. If partial solution p1 is worse than p2 in
the sense of R, the objective value of p1 must be no larger than p2, i.e., p1Rp2 → (o p1 ≤ o p2).

Intuitively, the first condition ensures that (д′ xs ) is always equivalent to (thin[R] (д xs )), and
the second condition ensures that the optimal solution with the largest objective value is always

reserved by thinning. Therefore, they together imply the correctness of thinning.

Extracting Examples for the Preorder. The thinning theorem provides a specification, and the

remaining task for automating thinning is to find a preorder R satisfying both conditions.

However, directly synthesizing from these conditions is challenging due to the complexity of

Formula 3, which involves both universal quantifiers ∀ and ∃, and a possibly complex relation↠
defined on the semantics of the input function φ. To our knowledge, there is no efficient synthesizer

that can handle such a complex specification.

MetHyl uses the framework of programming-by-example (PBE) [Shaw et al. 1975] to resolve this

challenge. Given a logic specification, a typical PBE solver first substitutes concrete values into the

formula, extracts constraints on concrete invocation of the target program (denoted as examples),

and then synthesizes from the examples. In this way, the core synthesizer does not have to handle

complex logic specifications, and thus the difficulty of synthesis is greatly reduced.

Now, we outline how MetHyl extracts simple examples for R from the two conditions.

First, MetHyl ensures the second condition by limiting the form of R to be λp1.λp2.(o p1 ≤
o p2) ∧ p1?Rp2, where ?R is a preorder to be synthesized, and thus considers only Formula 3.
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Then, MetHyl considering the following formula that is equivalent to Formula 3 for any p1,p2.

∃p ′
1
∈ (д xs ),

(
p1 ↠xs p

′
1
∧ ∀p ′

2
∈ (д xs ),

(
¬p2 ↠xs p

′
2
∨ ¬p ′

1
Rp ′

2

))
→ ¬p1Rp2 (4)

The conclusion of this formula, ¬p1Rp2, is extremely simple. If the premise can be transformed

to be irrelevant to the unknown preorder R, we can extract example (p1,p2) specifying ¬p1Rp2 by
constantly substituting p1,p2 with concrete partial solutions until the premise is satisfied. Compared

to Formula 3, the constraint provided by this example involves neither universal quantifiers nor↠,

and thus makes it possible to design an efficient synthesizer for R.
The transformation of Formula 4 is motivated by the fixed form of R for ensuring the first

condition, which implies that a part of R is known while synthesis. Therefore, we substitute R in

the conclusion of Formula 4 with λp1.λp2.p1R
′p2 ∧ p1?Rp2, where R

′
and ?R represent the known

preorder and unknown preorder in R respectively, and obtain the following equivalent formula.(
p1R

′p2 ∧ ∃p
′
1
∈ (д xs ),

(
p1 ↠xs p

′
1
∧ ∀p ′

2
∈ (д xs ),

(
¬p2 ↠xs p

′
2
∨ ¬p ′

1
Rp ′

2

)))
→ ¬p1?Rp2

Because ¬p ′
1
R′p2 implies ¬p ′

1
Rp ′

2
, a weaker formula whose premise is irrelevant to ?R can be

obtained by replacing ¬p ′
1
Rp ′

2
in the premise with the unknown comparison ¬p ′

1
R′p2.(

p1R
′p2 ∧ ∃p

′
1
∈ (д xs ),

(
p1 ↠xs p

′
1
∧ ∀p ′

2
∈ (д xs ),

(
¬p2 ↠xs p

′
2
∨ ¬p ′

1
R′p ′

2

)))
→ ¬p1?Rp2 (5)

We use an example to show how examples are extracted from Formula 5. In 0/1 knapsack

specified by Figure 1, suppose state xs is [(3, 3), (2, 2), (1, 2)], capacityW is 4, and the known part R′

is λp1.λp2.sumv p1 ≤ sumv p2. At this time, the domain of p1,p2 is {[], [(1, 2)], [(2, 2)], [(2, 2), (1, 2)]}
and the relation↠xs is described in Example 2.

• When p1 and p2 are taken as [(1, 2)] and [(2, 2)], the premise of Formula 5 is true because

(1) sumv p1 ≤ sumv p2, (2) p1 ↠xs p
′
1
= [(3, 3), (1, 2)], and sumv p ′

1
> sumv [(2, 2)], which is

only choice of p ′
2
satisfying p2 ↠xs p

′
2
. Therefore, example ¬[(1, 2)]?R[(2, 2)] is obtained.

• Similarly, another example can be obtained by taking p1 and p2 as [(1, 2)] and [(2, 2), (1, 2)].

Given these two examples, ?R = λp1.λp2.sumw p1 ≥ sumw p2 is a valid solution satisfying both

examples, which leads to the intended preorder for 0/1 knapsack.

Though Formula 5 is not equivalent to the original specification, i.e., a preorder satisfying

Formula 5 may not be valid for Formula 3, the following fact makes it useful for synthesizing R.

• Given preorder R′, if no examples for ?R can be extracted from Formula 5, or in other word,

the premise of Formula 5 is constantly true, R′ must be a valid for Formula 3.

This fact suggests an iterative framework for synthesizing R. Starting from R′ = λp1.λp2.o p1 ≤
o p2, a preorder satisfying Formula 3 can be synthesized in three steps.

(1) Extract examples for ?R from Formula 5 and a set of concrete instances of the COP task.

(2) If no examples are obtained, return R = R′ as the synthesis result.
(3) Synthesize a valid preorder ?R from the examples, update R′ with λp1.λp2.p1R

′p2 ∧ p1?Rp2,
and then go back to Step 1.

Synthesizing a Preorder from Example. The remaining task for MetHyl is to synthesize a

preorder ?R satisfying a set of negative examples (ai ,bi ) such that ¬(ai?Rbi ) holds. Besides, to
generate an efficient memoization algorithm, another goal of the synthesis is to minimize the time

complexity of the memoization algorithm generated by thinning.
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To enable an efficient synthesis algorithm, MetHyl synthesizes ?R in the following form, which

is a conjunction of comparisons related to several key functions.

a?Rb ⇐⇒ ∧i (?keyi a) ?opi (?keyi b)

where ?keyi is a function mapping a partial solution to an integer and ?opi is an operator in

{≤,=, ≥}. In our implementation, ?keyi is from a grammar including common arithmetic operators

and operators for lists and binary trees. More details on this grammar can be found in Section 7.

This form of preorder has two main advantages. First, a preorder in this form can be naturally

decomposed to several comparisons (?opi , ?keyi ), where the scale of each comparison is smaller than

the preorder. Moreover, in the terms of satisfying the given negative examples, these comparisons are

independent of each other: preorder ?R satisfies a negative example if and only if some comparison

in ?R is violated on the example. This property makes it possible to synthesize each comparison

separately and thus greatly reduce the scale of the synthesis task.

Second, we prove that the efficiency of the algorithm generated by thinning with a preorder

in this form can be estimated by the production of the ranges of all ?keyi . Such estimation is

monotonic while including more comparisons to the preorder, and thus is easy to optimize in a

search procedure. More details on this estimation can be found in Section 3.4.

Motivated by both properties,MetHyl regards a preorder as a list of comparisons and synthesizes

the list incrementally. Starting from an empty list, in each turn, MetHyl finds a comparison that

is violated on a large enough subset of unsatisfied examples and inserts it to the preorder. The

iteration proceeds until all examples are satisfied.

To efficiently find an effective preorder, MetHyl makes two changes on this basic iteration.

• As mentioned before, in Section 3.4, we prove that the effectiveness of a preorder for thinning

can be estimated by the ranges of the involved key functions. To find an effective preorder,

MetHyl backtracks on the iteration and uses branch-and-bound, a standard search technique,

to optimize the objective function provided by our estimation.

• To restrain the search space, MetHyl uses an outermost iteration on two parameters: (1) a

size limit ns for comparisons, and (2) a number limit nc for comparisons used in the preorder.

While choosing the ith comparison for ?R, only those comparisons that (1) are smaller than

ns , and (2) are violated on at least 1/(nc − i + 1) portions of examples are considered. In this

way, the search space of preorders is greatly reduced.

We use an example to show the search procedure ofMetHyl. Suppose the given negative examples

are ([(1, 2)], [(2, 2)]) and ([(1, 2)], [(1, 2), (2, 2)]) extracted in the previous example, and there are

only three comparisons c1 = (≥, λp.|p |), c2 = (≥, λp.sumw p) and c3 = (≤, λp.sumv p) that are
smaller than ns . These three comparisons are violated on 1, 2, and 0 examples respectively, and the

ranges
1
of their key functions on these two examples are 2, 3, and 4 respectively. For simplicity, we

assume the objective function is exactly the product of ranges of involved key functions.

• Whennc is set to 1,MetHyl considers comparisons that are violated on at least 2/(nc−1+1) = 2

examples. At this time, c2 is the only choice and thus MetHyl returns [c2] as the result.
• Whennc is set to 2,MetHyl considers comparisons that are violated on at least 2/(nc−1+1) = 1

example. At this time, there are two choices c1 and c2. First, because [c2] satisfies all examples,

MetHyl updates the upper bound to its objective value, which is 3.

Then, because c1 is violated only on the second example, MetHyl continues to find a preorder
satisfying the first example. By branch-and-bound, at this time, MetHyl only considers

preorders with an objective value smaller than 3/2 = 1.5. Because there is no comparison

with a range smaller than 1.5, MetHyl returns immediately and thus takes [c2] as the result.

1
The range here is defined as ma −mi + 1, where ma and mi are the maximum and the minimum outputs on the examples.
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2.4 MetHyl+: Improving Thinning via Three Supplementary Rules
For the second shortage, to improve the result of thinning, we analyze the factors that affect the

performance of memoizing generator д in Figure 1. The time complexity is as follows.

O
(
nkeys (sst + nsolsssol)

)
Here nkeys denotes the number of keys that key functionm (introduced in Figure 2) could possibly

return, nsols denotes the maximum number of partial solutions returned by a recursive call, sst
denotes the size of the search state, and ssol denote the size of a partial solution.

The execution time of memoizing д is the product of the number of invocations and the execution

time of a single invocation excluding the recursive call. The former is further confined by nkeys. The
latter consists of the execution time of processing the input and the execution time of producing

the solution, where there are nsols solutions, and each takes O (ssol) to process. Though this analysis

is specific to our example, we prove that in the general case, with some assumptions, optimizing

these four factors is enough to generate an efficient memoization algorithm (Theorem 5.4).

The main shortage of thinning is that it focuses only on nsols while remaining the other three

factors unchanged. In our example, though thinning optimizes nsols from O (2n ) to O (n), both sst
and ssol remains O (n) in the resulting program and leads to the gap between the result of thinning,

which runs in O (n3)-time, and the standard dynamic programming algorithm for 0/1 knapsack.

Motivated by the above analysis, we propose three supplementary rules to optimize the other

three factors, and propose solverMetHyl+, which automates and integrates these rules into MetHyl.
For 0/1 knapsack, our rules reduces ssol and sst to O (1), keeps nkeys unchanged as O (n), and thus

MetHyl+ can automatically generate an O (n2)-time memoization algorithm.

The procedure of applying these rules is listed in Figure 3. For each rule, Initial Program shows

the input for each rule where (д1,o1,m1) is the program generated by thinning, Intermediate
Program shows the transformation result where red variables represent the unknown functions

required by the rule, Examples lists concrete examples for the unknown functions extracted from

xs = [(3, 3), (2, 2), (1, 2)] andW = 4, and Synthesis Result shows the functions found by MetHyl+.

Rule 1. The first rule optimizes ssol, the size of partial solutions. Note that the list representation of

thinning is unnecessarily complex in (д1,o1,m1). To run this program, only the weight sum and the

value sum of each partial solution matter. Therefore, the main idea of this rule here is to replace

the representation of a solution from a list with a more compact representation, which includes

only necessary information for calculating the weight sum and the value sum
2
.

Rule 1 uses a converting function ?fp to convert the representation of partial solutions. It constructs
an intermediate program such that each partial solution p generated by the input program is also

generated by the intermediate one as the output of ?fp . In this procedure, because the type of partial

solutions is changed, those functions in the input program that access partial solutions (either takes

a solution as an input or constructs a solution as the output) should be replaced correspondingly.

In Figure 3, we mark the four functions that access partial solutions in (д1,m1,o1) as blue,
where [] and λx .λp.(x :: p) construct partial solutions, and λp.(sumw p) and λp.(sumv p) extracts
information from partial solutions. Rule 1 replaces them with unknown functions ?c⊥, ?c , ?qw and

?qv respectively and constructs the intermediate program (д′
1
,o′

1
,m′

1
). In Section 5.1, we show that

this transformation can be done by traversing on the AST of the hylomorphism.

2
Note that after changing the representation, the optimal solution in the original form can still be extracted from the

optimized program. In a nutshell, one can trace back the calculation that leads to the optimal solution in the optimized

program and recover the optimal solution in the original by repeating the calculation in the input program. This is a standard

technique, and thus we omit it throughout this paper.
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Fig. 3. The procedure of applying the three supplementary rules to improve the result of thinning for 0/1
knapsack. For simplicity, we omit the first parameter of д in this Figure.

MetHyl+ completes the intermediate program by synthesizing functions ?fp , ?c⊥, ?c , ?qw and

?qv via programming-by-example. To extract examples for these functions, MetHyl+ utilizes the
correspondence between the executions of the input program and the intermediate program.

Given a concrete instance of 0/1 knapsack, MetHyl+ traces the execution of the input program

(д1,o1,m1). Each time when a solution-related function is invoked, there must be an invocation of

the corresponding unknown function where each involved partial solution p is replaced with the

new representation ?fp p. Such an invocation is recorded as an example for synthesis.

For example, let us consider the invocation of д1 with state xs = [(3, 3), (2, 2), (1, 2)] and capacity
W = 4. We highlight two invocation of solution-related functions as follows.

• On partial solution [(1, 2)] ∈ д1 (tail xs ), λp.(sumv p) is invoked, and the result is 1. By the

correspondence, there should be an invocation of ?qw on the new representation of [(1, 2)],
i.e., ?fp [(1, 2)], that outputs 1. Therefore, example ?qw (?fp [(1, 2)]) = 1 is obtained.

• On item (3, 3) and partial solution [(1, 2)], λx .λp.(x :: p) is invoked, and a new partial

solution [(3, 3), (1, 2)] is constructed. Therefore, according to the correspondence, example

?c (3, 3) (?fp [(1, 2)]) = ?fp [(3, 3), (1, 2)] is obtained.

Several extracted examples for the other functions can be found in Figure 3.

The remaining task for applying Rule 1 is to synthesize from the following specification, where

Ec ,Ew , and Ev are the sets of extracted examples.

?c⊥ = ?fp [] ∀(x ,p) ∈ Ec , ?c x (?fp ) = ?fp (x :: p)

∀p ∈ Ew , ?qw (?fp p) = sumw p ∀p ∈ Ev , ?qv (?fp p) = sumv p (6)

MetHyl+ reduces this task to lifting problem and partial lifting problem, two kinds of synthesis

tasks studied by Ji et al. [2022], and synthesizes by invoking an efficient synthesizer AutoLifter for
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these tasks. Because the formal definitions of these tasks involve concepts in the category theory,

we leave them to Section 3.6 and use two examples to show the reduction made by MetHyl+.
• Given functions q,h,m = λx .λp.(x :: p), and a set E of examples, synthesizing ?f and ?c from
the following equation is an instance LP({m},q,h,E) of the lifting problem.

∀(x ,p) ∈ E, (q (m x p), ?f (m x p)) = ?c x (h p, ?f p)

Clearly, the second formula in Example 6 is equivalent to LP({λx .λp.(x :: p)}, null, null,Ec ),
where null represents a dummy program returning nothing.

• Given functions q,h,m = λp.p, and a set E of examples, synthesizing ?f and ?c from the

following equation is an instance PLP({m},q,h,E) of the partial lifting problem.

∀(x ,p) ∈ E,q (m x p) = ?c x (h p, ?f p)

Clearly, third formula in Example 6 is equivalent to PLP({λp.p}, λp.sumw p, null,Ew ).
Because in the task of applying Rule 1, function ?fp is shared in all specifications, there are some

details remaining on merging the results of the reduced tasks, which are left to Section 5.1.

AutoLifter uses grammars to guarantee the efficiency of the synthesis results. Under its default

setting, ?fp is synthesized from a grammar including only polynomial-time programs that output

only tuples of scalar values, and other functions are synthesized from a grammar including only

constant-time operators for scalar values. In this way, the time complexities of all synthesis results

except ?fp are guaranteed to be O (1). For Rule 1, because ?fp is never invoked in the optimized

program, such a guarantee provided by AutoLifter already ensures the efficiency of the result.

Rule 2. The second rule optimizes nkeys, the number of keys thatm possibly returns. Though the

trivial functionm = λxs .xs is already efficient in our example, in general, the search state may

record too much information such that reusing results only for exactly the same search state is

inefficient. An example of this case can be found in Section 3.2, which is shown as Figure 7. To

improve this point, Rule 2 replaces the original key function with a more compact one ?fm and

thus lets the memoized results be reused between different search states.

To automatically applying Rule 2, MetHyl+ synthesizes ?fm from examples. To ensure the cor-

rectness of the transformation result (in our example, (д′
2
,o′

2
,m′

2
) in Figure 3), MetHyl+ requires

?fm to assign different keys to search states with different outputs. At this time, negative example

(a,b) requiring that ?fm a , ?fm b can be extracted from the execution of the input program.

For example, let us consider the invocation ofд2 in Figure 3 with item list xs = [(3, 3), (2, 2), (1, 2)]
and capacity. All invocations of д2 and their results are listed as follows.

д2 [] = [(0, 0)] д2 [(1, 2)] = [(0, 0), (1, 2)] д2 [(2, 2), (1, 2)] = [(0, 0), (1, 2), (3, 4)]

д2 [(3, 3), (2, 2), (1, 2)] = [(0, 0), (1, 2), (3, 4), (4, 5)]

Because the outputs of д2 are pairwise different on the four states, the outputs of ?fm must be

pairwise different on [], [(1, 2)], [(2, 2), (1, 2)], and [(3, 3), (2, 2), (1, 2)], which leads to 6 negative

examples in the form of ?fm a , ?fm b for function ?fm .

To focus on effective candidates of ?fm , MetHyl+ considers only those functions compressed the

search state to a tuple of scalar values. At this time, ?fm can be regarded as a tuple of key functions.

?fm s = (?key1 s, . . . , ?keyn s )

MetHyl+ synthesizes ?fm from examples by reducing it to the synthesis task for thinning in

MetHyl. Note that key function ?fm can be regarded as an equivalence relation ?Rm over search

states, where a?Rmb is defined as ?fm a = ?fm b. The following shows the expanded form of ?Rm .

a?Rmb ⇐⇒ ∧i (?keyi a) = (?keyi b)
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First, the form of ?Rm matches the form of preorders considered by MetHyl. Second, the number

of different keys returned by ?fm is bounded by the product of the ranges of key functions,

which matches the objective function used by MetHyl. Therefore, an efficient ?fm can be directly

synthesized by invoking the solver in MetHyl.
For program (д′

2
,o′

2
,m′

2
), MetHyl synthesizes ?fm as λxs .|xs |. Though the value nkeys does not

change, the synthesized key function simplifies the information on search states required for

memorization, and thus make it possible to simplify the representation of search states later.

Rule 3. The step optimizes sst, the size of search states. The procedure of applying this rule is almost

the same with Rule 2. First, MetHyl+ uses a converting function ?fs to convert the representation

of search states, and generates an intermediate program (д′
3
,o′

3
,m′

3
) by replacing all state-related

functions (д3,o3,m3) with unknown functions. Second, MetHyl+ extracts examples by tracing the

execution of (д3,o3,m3) on concrete instances of 0/1 knapsack. Last,MetHyl+ synthesizes unknown
functions from examples by invoking AutoLifter.

For program (д′
3
,o′

3
,m′

3
), MetHyl+ synthesizes ?fs as λxs .|xs | and uses the length of the item list

to represent a search state. In this way, sst is reduced from O (n) to O (1).

Result. The result ofMetHyl+ for 0/1 knapsack is shown as (д∗,o∗,m∗) in Figure 3. In this program,

sst = ssol = O (1), nkeys = nsols = O (n), and thus the time-complexity is reduced to O (n2).

3 PRELIMINARIES
To operate functions, the following four operators ◦,+,×, and △ will be used in our paper.

( f1 ◦ f2) x B f1 ( f2 x ) ( f1 + f2) (i,x ) B fi x , i ∈ {1, 2}

( f1 × f2) (x ,y) B ( f1 x , f2 y) ( f1△ f2) x B ( f1 x , f2 x )

3.1 Categorical Functors
Functor is an important concept in category theory. A category consists of a set of objects, denoted

by uppercase letters such as A, and a set of arrows between objects, denoted by lowercase letters

such as f . In this paper, we focus on category Fun, where an object is a set and an arrow from

object A to object B is a total function from set A to set B. In a category, a functor F maps objects to

objects, arrows to arrows, and keeps identity and composition.

FidA = idFA F( f ◦ д) = Ff ◦ Fд

where idA represents the identity function on set A. Intuitively, a functor can be regarded as a

higher-order function, which constructs new functions from existing functions.

A functor is a polynomial functor if it is constructed by identity functor I, constant functors !A,
and bifunctors ×,+. Their definitions are shown below.

IA B A If B f (!A)B B A (!A) f B idA (F1 × F2)A B F1A × F2A (F1 × F2) f B F1 f × F2 f

(F1 + F2)A B ({1} × F1A) ∪ ({2} × F2A) (F1 + F2) f B F1 f + F2 f

where A × B represents the Cartesian product of objects A and B.
In this paper, when using symbol F, we inherently assume that F is a polynomial functor. Besides,

we also use the power functor P to express operations related to power sets.

PA B {s | s ⊆ A} Pf s B { f a | a ∈ s}

3.2 Generator, Memoization, and Hylomorphism
The concept of relational hylomorphism is originally defined on another category namely Rel. For
simplicity, in this paper, we introduce it as its simplified counterpart in category Fun.
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Definition 3.1 (Recursive Generator). Given arrows ϕ : PFA → PA and ψ : B → PFB, recursive
generator rд(ϕ,ψ )F : A→ PB is the smallest solution of the following equation, where arrow r1 is
smaller than r2 if ∀i, r1 i ⊆ r2 i .

rд(ϕ,ψ )F = ϕ ◦ cup ◦ P(car[F] ◦ Frд(ϕ,ψ )F) ◦ψ

In this equation, cup : PPA→ PA is defined as cup x B ∪s ∈xs , which unions all sets in a set of sets,

and car[F] : FPA→ PFA is defined as the following, which is similar to the Cartesian product.

car[I] x B x car[F1 × F2] (x1,x2) B (car[F1] x1) × (car[F2] x2)

car[!A] x B x car[F1 + F2] (i,x ) B {(i,a) | a ∈ x }

The concept of recursive generators corresponds to recursive programs in Rel. As discussed in

Section 2, a recursive generator can be naturally memoized via a key functionm. In the remainder

of this paper, we use rm to denote the result of memoization.

In this paper, recursive generator rд(ϕ,ψ )F is invoked to generate valid solutions for a given

COP. Similar to the discussion in Section 2, we denote the input of rд(ϕ,ψ )F as a search state, an
element in the output of rд(ϕ,ψ )F as a solution, and an element in the output of some invocation

involved in the recursive definition as partial solution.

Definition 3.2 (Relational Hylomorphism). Given two arrows ϕ : FA → PA and ψ : B → PFB,
relational hylomorphism [[ϕ,ψ ]]F : B → PA is defined as rд(cup ◦ Pϕ,ψ ).

Compared to a general recursive generator, a hylomorphism assumes the independence while

constructing each solution. For hylomorphism [[ϕ,ψ ]]F, given the set including all sub-results of

the recursions, i.e., (cup ◦ P(car[F] ◦ F[[ϕ,ψ ]]F) ◦ψ ), [[ϕ,ψ ]]F independently constructs solutions for

each result via Pϕ, and then merges all solutions via cup.
Figure 4 shows a program corresponding to the input program (д,o) specified in Figure 1, where

д is expressed by hylomorphism [[ϕ,ψ ]]F. Because both ϕ,ψ return a set, we use |collect| instead of

|return| to express their outputs, where |collect e | inserts the value of e to the resulting set.

Relational hylomorphisms are natural for specifying COPs, whereψ and ϕ specify the recursive

structure and the construction of solutions respectively. However, relational hylomorphism is not

enough to express optimizations (e.g., thinning), where the construction of solutions is no longer

independent due to the optimization. Therefore, MetHyl takes a relational hylomorphism as the

input but expresses the internal optimized programs via recursive generators.

3.3 Programs
In MetHyl and MetHyl+, a program is represented by a pair (д,o). Given an instance i of the COP,
the output of (д,o) is equal to argmax o (д i ). In terms of solving COPs, two programs are equivalent

on an instance if they achieve the same objective value.

Definition 3.3 (Equivalence). Two programs (д1,o1) and (д2,o2) are equivalence on instance i ,
denoted as (д1,o1) ∼i (д2,o2), if max(д1 p),p ∈ (д2 i ) = max(o2 p),p ∈ (д2 i ).

This concept can be naturally extended to a set of instances. Program (д1,o1) and (д2,o2) are
equivalence on a set I of instances, denoted as (д1,o1) ∼I (д2,o2), if ∀i ∈ I , (д1,o1) ∼i (д2,o2).

In this paper, we provide a simple languageLH for specifying COPs via relational hylomorphisms.

The syntax of this language is shown as Figure 6, and three different programs in LH for describing

0/1 knapsack are shown as Figure 4, 5 and 7, where |if E then S| is a sugar of |if E then S else skip; |,
and |λ(x1,x2).S| is a sugar of extracting components in the input for |λx .S|.
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prog = ([[ϕ,ψ ]]F,o), where

F =!Unit + I + ((!Int×!Int) × I)

ψ = λxs . if |xs | = 0 then collect (1, unit);

else {collect (2, tail xs );

collect (3, (head xs, tail xs )); }

ϕ = λ(tag,p). if tag = 1 then collect [];

else if taд = 2 then collect p.2;

else if (sumw p.2) + p.1.1 ≤W then

collect (p.1 :: p.2);

o = λp.sumv p

Fig. 4. The program corresponding to (д,o).

prog
2
= ([[ϕ,ψ ]]F,o), where

F =!Unit + ((!Int×!Int) × I)

ψ = λxs . if |xs | = 0 then collect (1, unit);

else collect (2, (head xs, tail xs ));

ϕ = λ(tag,p). if tag = 1 then collect [];

else {collect (p.1 :: p.2); collect p.2; }

o = λp.(sumw p ≤W ) ? (sumv p) : −∞;

Fig. 5. A valid program for 0/1 knapsack in
LH . In this program, −∞ is a small enough
integer used to exclude invalid programs.

Program P → (H,E)
Hylomorphism H → [[λx .S, λx .S]]F

Functor F → I | !Unit | !Int | F × F
| F + F

Statement S → skip; | S S | collect E;
| if E then S else S
| foreach x ∈ [E,E] in S

Expression E → x | const | λx .E
| ⊕ E . . . E

Fig. 6. The syntax of language LH , where x repre-
sents a variable, ⊕ represents a black-box operator.

prog
3
= ([[ϕ,ψ ]]F,o), where

F =!Unit + I + ((!Int×!Int) × I)

ψ = λ(xs,p). if |xs | = 0 then collect (1, unit);

else {collect (2, (tail xs,p));

if (sumw p) + (head xs ).1 ≤W then

collect (3, (head xs, (tail xs, (head xs ) :: p))); }

ϕ = λ(tag,p).if tag = 1 then collect [];

else if tag = 2 then collect p;

else collect (p.1 :: p.2);

o = λp.sumv p

Fig. 7. A valid program for 0/1 knapsack in LH . The
search state here is (xs,p), where xs is the list of
remaining items, p is the list of selected items.

3.4 Thinning
The definition of thinning is based on preorders. A preorder on object A is a relation that is reflexive

(∀a ∈ A,aRa) and transitive (∀a,b, c ∈ A,aRb ∧ bRc → aRc ).

Definition 3.4. Given a preorder R on A, thin[R] : PA → PA is an arrow such that for any set

s ⊆ A, thin[R] s is the smallest subset of s satisfying ∀a ∈ s,∃b ∈ thin[R] s,aRb.

In this paper, we focus on a special case of thin[R] where R is the conjunction of comparisons on

several key functions. We denote such a preorder as a keyword preorder.

Definition 3.5 (Keyword Preorder). A keyword preorder R of comparisons {(opi ,ki )} on A is

defined as aRb ⇐⇒ ∧i (ki a)opi (ki b), where ki is an arrow from A to Int and opi ∈ {≤,=, ≥}.

Given a keyword preorder R, Theorem 3.6 shows that the size of the set returned by thin[R] and
the time cost of thin[R] can both be bounded by the ranges of the key functions involved in R.

Theorem 3.6. Given a keyword preorder R of {(opi ,ki )}, define function NR (S ) as the following,
where range(k, S ) is the range of k on S , i.e., maxa∈S (k a) − mina∈S (k a), and max1 (S ) returns the
largest element in S with default value 1.

NR (S ) B *
,

∏
i

range(ki , S )+
-

/
max

i

(
range(ki , S )

��� opi ∈ {≤, ≥}
)
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• For any set S , |thin[R] S | ≤ NR (S ).
• There is an implementation of thin[R] with time complexity O (NR (S )size(R) +TR (S )), where S is
the input set, size(R) is the number of comparisons in R, TR (s ) is the time complexity of evaluating
all key functions in R for all elements in S .

Due to the space limit, we omit the proofs to the theorems and move them to the appendix.

3.5 Thinning Theorem
The thinning theorem proposed by Bird and de Moor [1997] shows that thin[R] can be used to

derive efficient memoization algorithms for COPs. In this paper, we use the following variant of

the thinning theorem, which generalizes the original one to all relational hylomorphisms.

Given program (h = [[ϕ,ψ ]]F,o) and a search state s , invoking h on s without memoization

generates a search tree where each vertex corresponds to a search state. We introduce two notations

Th and Sh to access the structure of this tree, where Th s and Sh s represent the set including all

direct children of s and the set including all states in the subtree of s respectively.
Besides, we introduce relation↠h,s to denote the constructions of solutions. For partial solution

p ∈ h s and tuple (p1, . . . ,pk ) of partial solutions, (p1, . . . ,pk ) ↠h,s p holds if there is an invocation

of ϕ where (p1, . . . ,pk ) are all partial solutions used in the input and p is inside the output.

Theorem 3.7 (Thinning Theorem). Given program (h = [[ϕ,ψ ]]F,o) and preorder R, for any
instance i , (rд(thin[R] ◦ cup ◦ Pϕ,ψ )F,o) ∼i (h,o) if the following two conditions are satisfied.
(1) ∀s ∈ Sh i,∀p1,p2 ∈ h s,p1Rp2 → (o p1 ≤ o p2).
(2) ∀s ∈ Sh i,∀p1 = (p1,1, . . . ,p1,k ),p2 = (p2,1, . . . ,p2,k ), where p1,i and p2,i are partial solutions

of the same search state for all i ∈ [1,k], the following formula is always satisfied.
k∧
i=1

p1,iRp2,i → ∀p
′
1
,

(
p1 ↠h,s p

′
1
→ ∃p ′

2
,
(
p2 ↠h,s p

′
2
∧ p ′

1
Rp ′

2

))
(7)

3.6 Lifting and Partial Lifting
Lifting problems and partial lifting problems are synthesis tasks studied by Ji et al. [2022], which

are generalized from the synthesis task for automated parallelization.

Definition 3.8. Given arrows p,h starting from object A, a setM including n arrowsmi : FmiA→
A, and an example space E attaching a set of examples E[mi ] to each mi ∈ M , lifting problem

LP(M,p,h,E) and partial lifting problem PLP(M,p,h,E) are to find ?f , ?c1, . . . , ?cn such that Equa-

tion 8 and 9 are satisfied for allmi ∈ M , respectively.

∀e ∈ E[mi ], ((p△?f ) ◦mi ) e = (?ci ◦ Fmi (h△?f )) e (8)

∀e ∈ E[mi ], (p ◦mi ) e = (?ci ◦ Fmi (h△?f )) e (9)

AutoLifter [Ji et al. 2022] is an efficient synthesizer for these two tasks, and guarantees that the

time complexities of ?f and ?c are polynomial-time and constant-time respectively.

4 METHYL: AUTOMATING THINNING
Given program (h = [[ϕ,ψ ]]F,o) and a set of instances I ,MetHyl generates a memoization algorithm

by applying thinning to (h,o). Concretely, MetHyl synthesizes a keyword preorder ?R satisfying

Theorem 3.7 for all instance i ∈ I , and returns the following program.

prog
1
= (rд(thin[?R] ◦ cup ◦ Pϕ,ψ )mF ,o) (10)

wherem is the trivial key function λs .s for memoization.
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4.1 Synthesis Task
To generate an efficient memoization algorithm, MetHyl needs to find a keyword preorder ?R such

that the result of applying thinning with ?R is correct and efficient.

For correctness, ?R must satisfy the two conditions provided by Theorem 3.7.MetHyl ensures the
first condition by requiring ?R to include comparison (≤,o), and considers the following equivalent
form of Formula 17 in the second condition.

∃p ′
1
,

(
p1 ↠h,s p

′
1
∧ ∀p ′

2
,
(
¬p2 ↠h,s p

′
2
∨ ¬p ′

1
Rp ′

2

))
→

k∨
i=1

¬p1,iRp2,i (11)

Given a concrete preorder R and an instance i , we denote pair (p1,p2) as a counter-example for

R on instance i if the Formula 11 is violated after substituting into p1 and p2. Let CE (R, i ) be the
set of all counter-examples of R on instance i . Then finding a correct preorder ?R for thinning on

instance i is equivalent to finding ?R such that CE (?R, i ) is empty.

For two keyword preorders R1 and R2 where comparisons in R1 form a subset of those in R2,

Lemma 4.1 relates the sets of counter-examples of R1 and R2 with the extra comparisons in R2.

Lemma 4.1. Given instance i , for any two keyword preorders R1,R2 where all comparisons in R1 are
included in R2, the following formula is always satisfied.

∀(p1,p2) ∈ CE (R1, i ), (p1,p2) < CE (R2, i ) ↔ ¬p1 (R2/R1)p2

where R2/R1 represents the keyword preorder formed by the comparisons in R2 that are not used in R1.

Lemma 4.1 suggests an incremental synthesis scheme for ?R. To synthesize a correct preorder by
enlarging a known keyword preorder R1 with an unknown one ?R2, ?R2 must satisfy all examples

(p1,p2) in CE (R1, i ), where ?R2 satisfies example (p1,p2) is defined as ¬p1?R2p2.
For efficiency, the number of plans returned by thin[?R] and the time cost should be minimized.

Guided by Theorem 3.6, MetHyl optimizes the following objective function while synthesis.

cost(?R, I ) B N?R (P ), P =
{
p���i ∈ I , s ∈ Sh i,p ∈ h s

}

4.2 Synthesis Algorithm
We start with a synthesis algorithm for a subtask where a finite set of comparisons C and a size

limit nc are provided. In this subtask, the search space of ?R is constrained to keyword preorders

constructed by (≤,o) and at most nc comparisons in C .
As shown in Algorithm 1, MetHyl solves this subtask via branch-and-bound. The main function

BestPreorder decides comparisons used in ?R one by one with an upper bound on the cost (Lines

1-14). In each turn, a set of candidate comparisons is identified via CandidateComps (Line 5) and
they are considered in the increasing order of the cost (Line 6). For each comparison c , if its cost
is smaller than the bound (Line 9), preorders including c will be considered recursively (Line 10).

Results of recursions will be used to update the bound (Line 11).

The implementation of CandidateComps() is crucial to the efficiency of Algorithm 1. If it returns

too many candidate comparisons, the search space of BestPreorderwill be too large to be explored
efficiently. Based on the following lemma, CandidateComps(C, lim, es) in MetHyl returns only
those comparisons that satisfy at least |es |/lim examples.

Lemma 4.2. Given a set of instances I , for any two keyword preorders R1,R2 where all comparisons
in R1 are included in R2 and ∀i ∈ I ,CE (R2, i ) = ∅, there exists a comparison (op,k ) ∈ R2/R1 satisfying
at least 1/( |R2 | − |R1 |) portion of examples in CE (R1, I ) = ∪i ∈ICE (R1, i ), i.e.,

���
{
(p1,p2) ∈ CE (R1, I )

��� ¬
(
(k p1)op (k p2)

)}��� ≥ |CE (R1, I ) |
/
( |R2 | − |R1 |)
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Algorithm 1: Synthesizing preorder ?R for applying thinning.

Input: Input program (h,o), a set of instances I , a set of comparisons C = {(opi ,ki )}, and a size limit nc .
Output: A keyword preorder ?R for (h,o) that involves only comparisons in C .

1 Function BestPreorder(R, lim, costLim):
2 es ← ∪i ∈ICE (R, i );

3 if es = ∅ then return R;

4 if lim = 0 then return ⊥;
5 cList ← CandidateComps(C, lim, es );

6 Sort cList in the increasing order of cost(R ∪ {c}, I );
7 res← ⊥;
8 foreach c ∈ cList do
9 if cost(R ∪ {c}, I ) ≥ costLim then continue;

10 R′ ← BestPreorder(R ∪ {c}, lim − 1, costLim);

11 if R′ , ⊥ then (res, costLim) ← (R′, cost(R′, I ));
12 end
13 return res;
14 return BestPreorder({(≤,o)},nc ,+∞);

where |R | represents the number of comparisons in keyword preorder R.

A direct implementation of CandidateComps(C, lim, es) in Algorithm 1 (Line 5) is to evaluate

all comparisons in C on all examples in es . Such an implementation is inefficient because both C
and es can be large. MetHyl further improves this point by sampling. For each comparison in C ,
MetHyl decides whether to include it in CandidateComps(C, lim, es) in two steps.

• First, MetHyl draws lim × nt random examples from es , where nt is a given parameter. The

comparison will be ignored if the number of samples it satisfies is smaller than kt = ⌊lim/2⌋.
• Second, the comparison is evaluated on all examples and is returned by CandidateComps
only when it satisfies at least |es |/lim examples.

Specially, kt is set to lim × nt , i.e., the number of samples, when lim is equal to 1.

By Chernoff bound, the probability for a comparison that satisfies at least 1/lim portion of

examples in es to be filtered out by the samples is at most exp(−nt/8). Therefore, the probability
for Algorithm 1 to incorrectly exclude some comparison can be controlled by nt . Moreover, as we

shall show later, because Algorithm 1 inMetHyl is wrapped in an iteration procedure, such an error

rate does not affect the completeness of MetHyl, as demonstrated by Theorem 4.3.

The following is some details to make Algorithm 1 useful for synthesizing ?R in practice.

Decide a finite set of comparisons. In practice, the space of comparisons is specified by a

grammar, in which the number of comparisons is infinite. Because of the difficulty of finding the

optimal preorder from an infinite set of comparisons, MetHyl approximates it via the principle of

Occam’s Razor and prefers to use smaller comparisons to construct ?R. Concretely, MetHyl selects
a parameter sc and takes all comparisons no larger than sc in the grammar as set C .
Decide sc and nc . Because both parameters sc (the size limit of comparisons) and nc (the number

limit of comparisons) are not given in practice,MetHyl decides them iteratively with two parameters

s∗c and n∗c . In each turn, MetHyl considers the subtask where nc = n∗c and sc = s∗c . If there is no
solution, both s∗c and n

∗
c will be increased by 1 in the next iteration.

We prove the completeness of MetHyl for synthesizing preorders in the following theorem.
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Theorem 4.3. Given program (h,o), a set of instances I and a grammarG for available comparisons,
if there exists a keyword preorder R satisfying (1) ∀i ∈ I ,CE (R, i ) = ∅, and (2) R is constructed by
(≤,o) and some comparisons in G, MetHyl must terminate and return such a keyword preorder.

5 MetHyl+: IMPROVING THINNING VIA THREE RULES
To improve the memoization algorithm generated by thinning, MetHyl+ introduce three supple-
mentary rules on the basis of MetHyl to optimize three factors ignored by thinning: (1) the size of

solutions, (2) the number of keys in memoization, and (3) the size of search states.

5.1 Rule 1: Optimizing the Representation of Solutions
The program prog

1
generated by thinning is in Form 10, where the bodies of ϕ andψ are statements

(S) in language LH (Figure 6). MetHyl+ optimizes the size of partial solutions via a converting

function ?fp , which maps partial solutions into a tuple of scalar values.

MetHyl+ constructs an intermediate program prog′
1
that performs almost the same as prog

1
except

each partial solution p is stored as ?fp p. The construction is done by rewriting all solution-related

functions, which can be classified into the following two types according to their output type.

• Constructors, which constructs a new partial solution. In language LH , constructors are the

sub-expressions spe of all |collect spe | in ϕ.
• Queries, which returns a tuple of scalar values. In languageLH , queries are all solution-related

expressions outside |collect spe | in program prog
1
.

The following shows the content of prog′
1
.

prog′
1
= (rд((thin[R′]) ◦ cup ◦ Pϕ ′,ψ )F, ?q[o]) (12)

First, Both the objective function o and keywords ?R are queries. In prog′
1
, o and ?R are replaced

with ?q[o] and R′ = {(op, ?q[k]) | (op,k ) ∈ R}. Second, constructors and other queries are extracted
from ϕ. In prog′

1
, ϕ is replaced with function ϕ ′ constructed by Algorithm 2, a structural recursion

on the AST of ϕ. The notations used in Algorithm 2 are explained blow.

• |s | represents to the input variable of ϕ.
• RewriteE and RewriteS corresponds to non-terminal E and S in LH respectively. Specially,

RewriteE returns ⊥ if the current expression in prog
1
is inside a query.

• Children(p,N) returns all children of AST node p corresponding to non-terminal N, and
Clone(p, c) constructs a new AST node by replaces the children of p with list c .

To characterize the specification of ?fp , ?q and ?c , we introduce two notations F[p] and RE (p, i ).

• For each query (or constructor) p, functor F[p] indicates partial solutions in the input of

p. For queries extracted from R? and o, F[p] B I; For functions extracted from ϕ, F[p] B
F×!T1 × . . .!Tn , where F is the functor used by the recursive generator in prog

1
, and !Ti is the

type of the ith temporary variable used by p3.
• Given instance i , for each query (or constructor) p, set RE (p, i ) records all the inputs on which

p is invoked during (prog
1
i ), which can be obtained by instrumenting prog

1
.

Lemma 5.1 provides a sufficient condition for ?fp , ?q and ?c to guarantee the correctness of prog′
1
.

3
Note that there are only two ways to introduce a temporary variable in language LH , which are lambda expressions

(λx .E) and for-loops (foreach x ∈ [E, E] in S).
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Algorithm 2: Construct ϕ ′ from ϕ.

Input: A program ϕ = λs .ϕs , where ϕs is a statement in LH .

Output: Queries Q , ConstructorsM , and ϕ ′ in prog
2
.

1 Q ← ∅; M ← ∅;

2 Function RewriteE(pe):
3 if |s | < pe then return pe ;

4 if pe = |s | then return ⊥;
5 sp′e ← {RewriteE(spe) | spe ∈ Children(ps ,E)};

6 if ⊥ ∈ sp′e then
7 if pe output a tuple of scalar values then
8 t1, . . . , tm ← temporary variables in pe ;

9 Q .Insert(pe); return |?q[pe ] (s, t1, . . . , tm ) |;

10 end
11 return ⊥;
12 end
13 return Clone(pe , sp

′
e);

14 Function RewriteS(ps):
15 if p2 = |collect spe | then
16 t1, . . . , tn ← temporary variables in ps ;

17 M .Insert(spe); return |?c[ps ] (s, t1, . . . , tn ) |;
18 end
19 sp′e ← [RewriteE(spe) | spe ∈ Children(ps ,E)];

20 sp′s ← [RewriteS(sps) | spe ∈ Children(ps ,S)];

21 return Clone(ps , sp
′
e ++ sp

′
s).

22 ϕ ′s ← RewriteS(ϕs); return Q,M, λs .ϕ ′s ;

Lemma 5.1. Given instance i and program prog
1
in Form 10, let prog′

1
be result of Rule 1. If for any

query q and constructorm, Formula 13 and Formula 14 are satisfied respectively, prog
1
∼i prog′1 holds.

∀e ∈ RE (q, i ),q e = ?q[q] (F[q]?fp e ) (13)

∀e ∈ RE (m, i ), ?fp (m e ) = ?c[m] (F[m]?fp e ) (14)

To synthesize from Formula 13 and 14, MetHyl+ first rewrite Formula 13 as the follows.

(q ◦ id ) e = (?q[q] ◦ F[q](null△?fp )) e (15)

where id is the identity function, i.e., λx .x , and null is a dummy function that outputs nothing.

Compared to Definition 3.8, Formula 15 is equal to the specification of partial lifting problem

PLP({id },q, null,∪RE (q, i )). Therefore, MetHyl+ invokes AutoLifter to solve this task and find a

solution ?q[q] = q[q] and ?fp = fp[q] for each query q.
Then, MetHyl+ merges these results by fixing ?fp to fq△?f

′
p , where fq = △q∈Q fp[q] and Q

represents the set of queries. For each query q, such a ?fp and q[q] can be converted into a solution

to Formula 13 by adjusting the input type of q[q].
Next, MetHyl+ substitutes ?fp into the Formula 14 and rewrites the result into the follows.

∀m ∈ M, (( fq△?f
′
p ) ◦m) e = (?c[m] ◦ F[m]( fq△?fp )) e (16)

whereM represents the set of constructors. Compared to Definition 3.8 gain, Formula 16 is equal to

the specification of lifting problem LP(M, fp , fp ,E), where E[m] is equal to ∪RE (m, i ). Therefore,
the remaining part ?f ′p in ?fp and all ?c[m] can be synthesized by invoking AutoLifter again.
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At last, MetHyl fills the synthesized ?fp , ?q[q] and ?c[m] into the intermediate program prog′
1

and thus obtains the result of applying Rule 1.

5.2 Rule 2: Optimizing the Number of Keys
Given program (r ,o), where r is a recursive generator, and a set of instances I , MetHyl+ optimizes

the number of keys by synthesizing a proper key function ?fm and returns (r ?fm ,o) as the result.
Lemma 5.2 provides a sufficient condition for ?fm to guarantee the correctness of (r ?fm ,o).

Lemma 5.2. Given instance i and program (r ,o), where r is a recursive generator, (r ?fm ,o) ∼i (r ,o)
if for any two states s1, s2 ∈ (Sr i ), r s1 , r s2 → ?fm s1 , ?fm s2.

Given an instance i , a set of examples ME (i ) can be extracted according to Lemma 5.2. Each

example inME (i ) is a pair of states, on which ?fm must output different keys.

For efficiency, to limit the number of keys, MetHyl+ requires ?fm to return a tuple of scalar

values, and thus synthesizes it in the form of λs .(?key1 s, . . . , ?keyn s ). At this time, the number

of keys returned by ?fm is bounded by the product of the ranges of all ?keyi . Therefore, MetHyl+

minimizes the following objective function while synthesizing ?fm .

cost(?fm , I ) B
n∏
i=1

range(ki , S ), where S = ∪i ∈I (Sr i )

Notice that ?fm can be regraded as a preorder ?Rm where s1?Rms2 is defined as ∧i (keyi a) =
(keyi b), and cost(?fm , I ) is exactly the same as N?Rm (∪i ∈I , Sr i ) defined in Theorem 3.6. Therefore,

the synthesis task of ?fm has the same form as the synthesis task for thinning discussed in Section

4.1, and can be solved by the synthesis algorithm proposed in Section 4.2.

5.3 Rule 3: Optimizing the Representation of Search States
After applying the second rule, the program is transformed into the following form.

prog
3
= (r ,o), r = rд

(
thin[R] ◦ cup ◦ Pϕ,ψ

) fm
F

where the bodies of ϕ andψ are statements (S) in LH .

Similar to Rule 1, MetHyl+ optimizes the size of states via a converting function ?fs , which
maps states in prog

3
into a tuple of scalar values. MetHyl+ rewrites all state-related queries and

constructors in prog
3
with functions ?q and ?c respectively, and thus constructs an intermediate

program prog′
3
that performs almost the same as prog

3
except state s in prog

3
is stored as ?fs s .

In prog
3
, key function fm is identified as a query. Other queries and constructors are extracted

fromψ similarly to Algorithm 2. The only difference is that inψ , the parameter spe of |collect spe |
is a structure including states, on which r will be recursively applied, and scalar values, which will

be directly passed to ϕ. Because F is a polynomial functor, these components can be extracted from

spe via the access operator, i.e., |spe .i1.i2 . . . in |. Those components corresponding to states and

scalar values are identified as constructors and queries respectively.

We omit the concrete synthesis task and the synthesis algorithm here because they are the same

as the counterparts for Rule 1.

5.4 Properties of MetHyl+

We end this section with two noticeable properties of MetHyl+. First, Theorem 5.3 guarantees the

result of MetHyl to be correct on all given instances.

Theorem 5.3. Given input program (h,o) where h is a relational hylomorphism and a set of
instances I , let p∗ be the program generated by MetHyl+ with I . Then ∀i ∈ I , (h,o) ∼i p∗.
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Second, Theorem 5.4 shows when ϕ,ψ and o in the input program and all functions involved in

the program space run in pseudo-polynomial time and involve only linear arithmetic operators,

the program synthesized by MetHyl+ is guaranteed to run in pseudo-polynomial time, i.e., the time

complexity of the result is polynomial to the size and values in the input.

Theorem 5.4. Given input ([[ϕ,ψ ]]F,o) and grammarG specifying the program space for synthesis
tasks, the program generated by MetHyl+ must be pseudo-polynomial time if the following conditions
are satisfied: (1) ϕ,ψ and programs inG runs in pseudo-polynomial time, (2) each value and the size of
each recursive data structure generated by the input program are pseudo-polynomial, (3) all operators
in G are linear, i.e., their outputs are bounded by a linear expression with respect to the input.

6 DISCUSSION
In this section, we discuss three subtle details on the design of MetHyl and MetHyl+.
The order of transformations.MetHyl+ optimizes the input program by applying thinning, Rule

1, Rule 2, and Rule 3 in order. Such an order is decided because of the following reasons.

First, Rule 1 should be applied after thinning. Because Rule 1 ignores most information in the

solution, some attributes may become incalculable after applying Rule 1. In the example discussed

in Section 2, after replacing solution p with (sumw p, sumv p), the size |p | becomes incalculable in

the optimized program. Therefore, if Rule 1 is applied before thinning, some efficient preorders for

thinning may become incalculable and thus an inefficient preorder may be used.

Second, Rule 3 should be applied after Rule 2. Before applying Rule 2, the key function used for

memoization is λs .s , which means that the whole state s is necessary. Therefore, applying Rule 3
before Rule 2 cannot lead to any optimization.

Third, thinning and Rule 1 should be applied before Rule 2. Because both thinning and Rule 1

simplify the output of the generator, applying them before Rule 2 may let the generator output the

same on more states and thus may enable a more efficient key function.

The requirement on the relational hylomorphism. Following the thinning theorem (Theorem

3.7), MetHyl requires the generator in the input program to be specified in the form of relational

hylomorphism. We believe this requirement is not a significant limitation in practice because of

the following two reasons.

First, as shown in Section 2.3, a generator can be converted to hylomorphism by specifying the

recursion of states and the construction of solutions separately. Such a conversion does not take

algorithmic effort and should be easier for the user than proposing an efficient algorithm.

Second, there have been studies on automatically generating a hylomorphism from a recursive

program [Hu et al. 1996]. Therefore, this limitation can be eliminated by combining MetHyl and
MetHyl+ with these approaches.

The correctness guarantee of the result. Both MetHyl and MetHyl+ ensure the correctness of
the result only on a given set of instances. Such a guarantee can be improved to the correctness on

all instances via a complete verifier and the CEGIS framework [Solar-Lezama et al. 2006].

However, due to the complexity of memoization, such a verifier may not exist. Therefore, in our

implementation we use the probabilistic verifier provided by AutoLifter, which verifies quickly by

testing the result on a dynamically adjusted number of random instances. The guarantee provided by

this verifier follows the framework of PAC learnability [Valiant 1984], which ensures the probability

for the error rate to be larger than a threshold is small. The practical performance of such guarantees

has been demonstrated by Ji et al. [2021]; Wang et al. [2021].

7 IMPLEMENTATION
Our implementation of MetHyl and MetHyl+ can be found in the supplementary material.
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Generating instances. MetHyl and MetHyl+ require a set of instances to extract examples for

each synthesis task. We generate these instances by sampling. Given an instance space specifying

by assigning each integer with a range and each recursive data structure with an upperbound on

the size, MetHyl and MetHyl+ sample from the space according to a uniform distribution.

To limit the time cost of executing the input program, MetHyl and MetHyl+ decide this space by
iteratively squeezing from a default space until the average time cost of the input program on a

random instance is smaller than 10
−3

second.

Grammar. MetHyl uses a grammar to describe the space of possible synthesis results. In our

implementation, we extended the CLIA grammar in SyGuS-Comp [Padhi et al. 2021] with the

following operators related to lists and binary trees.

• Accumulate operator fold and lambda expressions.

• Access operators access for lists, and value, lchild, rchild, isleaf for binary trees.

• Match operator match for lists and binary trees, which returns the first occurrence of a sublist

(subtree) on a given list (tree). This operator is useful in applying Rule 3, as it can correspond the

search state to some global data structure.

Others. The original implementation of AutoLifter uses PolyGen [Ji et al. 2021], a specialized solver

for conditional linear expressions, to synthesize ?c for lifting problems. Therefore, when the input

program uses non-linear operators, we will replace PolyGen with a SOTA enumerative solver,

observational equivalence [Udupa et al. 2013], to make AutoLifter applicable.
To implement the preorder synthesizer introduced in Section 4.2, we set n∗c to 2 and s∗c to 10

5
,

which are enough for most known tasks, and set nt to 8, which ensures that the error rate of

CandidateComps to be at most e−1 ≈ 37%.

To use the iterative verifier discussed in Section 6, we set the basic number of examples to 10
4

and thus the probability for the error rate of the result to be more than 10
−3

is at most 1.82 × 10−4.

8 EVALUATION
Our evaluation answers two research questions.

• RQ1: How is the overall performance of MetHyl and MetHyl+?
• RQ2: How do thinning and the three rules proposed in this paper perform in MetHyl+?

8.1 Dataset
Our evaluation is conducted on a dataset including 37 input programs for 17 different COPs. Besides

problem 0/1 knapsack discussed in Section 2, the other COPs are collected from Introduction to
Algorithms [Cormen et al. 2009], a widely-used textbook for algorithm courses. This book introduces

dynamic programming in its 15th chapter with 4 example COPs and provides 12 other COPs as the

exercise. We include all these 16 COPs in our dataset.

The input program is written in our language LH defined in Section 3.3, where each program

comprises a generator in the form of relational hylomorphism and a scorer. We divide the 17 COPs

into two categories according to whether solutions are constrained, and construct input programs

for them via two criteria respectively.

The first category includes COPs where solutions are not constrained. A representative COP

here is rod cutting, the first example in the 15th chapter of Introduction to Algorithms.
Known that a rod of length i worthwi , the task is to cut a rod of length n into several pieces

and maximize the total value of all pieces.
In this task, all possible ways to cut the rod are valid solutions. For each COP in this category

(7 in total), we construct an input program as natural, where the generator returns all possible

solutions and the scorer calculates the objective value.
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The second category includes COPs where solutions are constrained. A representative COP

in this category is 0/1 knapsack, where a solution is valid only when the total weight is no more

than the capacity. For each COP in this category (10 in total), we implement three input programs

(д = [[ϕ,ψ ]]F,o) according to three extreme principles.

• The first program keeps all information in the input of ψ and filters out invalid solutions

while deciding transitions. Figure 7 shows such a program for 0/1 knapsack.
• The second program tries all possibilities of constructing solutions inψ and lets ϕ filter out

invalid ones. Figure 4 shows such a program for 0/1 knapsack.
• The last program uses д to generate all solutions and excludes invalid ones via a small enough

objective value. Figure 5 shows such a program for 0/1 knapsack.

8.2 Experiment Setup
We run MetHyl and MetHyl+ on all 37 tasks in the dataset and set a time limit of 120 seconds for

MetHyl and each rule in MetHyl+. Especially, if a rule in MetHyl+ times out, MetHyl+ will skip this

rule and go on to the next.

For each execution, we record the time cost and the transformation result for MetHyl and each

rule in MetHyl+. We manually verify the correctness and the time complexity of each result and

compare them with the reference algorithms provided by Cormen et al. [2009] and Li [2011].

8.3 RQ1: Overall Performance of MetHyl and MetHyl+

We confirm that all programs generated byMetHyl andMetHyl+ are completely correct. The detailed

performance of MetHyl and MetHyl+ are listed in Table 1.

• For each task, COP lists the name of the corresponding COP in Introduction to Algorithm,

Imp lists the index of the principle used to implement the input program if the COP is in the

second category, and Tinp lists the time complexity of the input program in Ω̃ notation.

• For each approach, Tres lists the time complexity of the result program in Õ notation, and

Time lists the number of seconds used to generate the result.

First, Table 1 demonstrates the effectiveness of MetHyl on automating thinning. MetHyl achieves
exponential speed-ups against the input program on 31/37(83.8%) tasks with an average time

cost of 4.2 seconds. Besides, the comparison between the results of MetHyl and the reference

algorithms demonstrates the gap between thinning and human experts: MetHyl achieves the same

time complexity as the reference algorithm only on 3/37(8.1%) tasks.
Second, Table 1 demonstrates the overall effectiveness of MetHyl+ on synthesizing efficient

memoization algorithms. MetHyl+ achieves exponential speed-ups against the input program on

36/37(97.3%) tasks with an average time cost of 59.2 seconds. Moreover, compared to MetHyl, the
ability ofMetHyl+ is much closer to human experts:MetHyl+ achieves the same time complexity as

the reference algorithm on 26/37(70.3%) tasks.
Besides, we conduct a case study on those 11 tasks where MetHyl+ fails in achieving the same

complexity as the reference algorithms, and conclude the following three main reasons.

• For task (15-5, 3), MetHyl+ fails because the scorer in this task provides little information.

In COP 15-5, a solution is a sequence of editions, and a solution is valid if the results of

these editions are equal to the target. In this sense, almost all partial solutions are invalid, on

which the scorer in (15-5, 3) simply returns −∞ according to the third principle. At this time,

MetHyl+ can hardly extract examples for ?R and thus fails in applying thinning.

• For tasks (15-8, 2) and (15-8, 3), MetHyl+ fails because of useless transitions. In both tasks,ψ
generates O (n) transitions but only O (1) among them can lead to valid solutions. However,

as all the three supplementary rules in MetHyl+ keep the recursive structure unchanged,

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2020.



1:24 Ruyi Ji, Tianran Zhu, Yingfei Xiong, and Zhenjiang Hu

Table 1. The performance of MetHyl and MetHyl+ on all tasks in our dataset.

COP Imp Tinp
MetHyl MetHyl+

COP Imp Tinp
MetHyl MetHyl+

Tres Time Tres Time Tres Time Tres Time

0/1

1

2
n

2
n

0.1

n2†

25.9

15-6

1

2
n

2
n

0.5

n†

41.2

Knapsack

2

n3
1.8 11.9 2

n2
0.4 28.1

3 3.8 23.8 3 0.8 31.4

Rod Cutting 2
n n3 0.1 n2† 18.4

15-7

1

nn n3†

0.1

n3†

3.6

Matrix Chain 4
n n4 0.1 n3† 15.4 2 0.1 10.5

LCS

1

5.8n n3
0.1

n2†

6.9 3 0.2 8.9

2 0.1 5.9

15-8

1 2
n

2
n

0.1 n2† 31.3

3 0.3 24.3 2

nn n4
0.2

n3
25.5

Optimal BST 4
n n4 0.2 n3† 24.5 3 0.2 12.1

15-1 2
n n4 0.1 n4 123.7 15-9 4

n n4 0.1 n3† 4.8

15-2

1

2
n n3

0.1

n2†

8.7 15-10 nn n4 0.1 n4 34.1

2 0.1 5.6

15-11

1

nn
nn 0.1 n3† 142.0

3 0.3 20.9 2

n4
9.0

n4
137.5

15-3 2
n n3 1.5 n3 133.4 3 9.9 137.1

15-4

1

2
n n3

0.1

n3
141.4

15-12

1

nn
nn 0.1

n3†

54.9

2 0.2 240.5 2

n5
2.1 27.6

3 0.3 240.6 3 2.9 31.6

15-5

1

7.6n n3
0.1

n2†
40.1

2 0.1 41.3

3 ≈ 7.7n‡ 120.0 7.7n 274.9

†
The result achieve the same time complexity as the reference algorithm for the corresponding COP.

‡
Both time complexities are Θ̃(an ), where

√
a ≈ 2.77 is the largest real root of x4 − 2x3 − 2x2 − 1.

Table 2. The performance of each transformation step.

Name Exp Poly ⊥ Time Name Exp Poly ⊥ Time

Thinning 31 0 1 4.2 Rule 1 0 3 7 32.8

Rule 2 5 0 0 5.1 Rule 3 0 24 3 59.2

this non-optimal behavior remains in the result and thus leads to a higher time complexity.

Optimizing the recursive structure of hylomorphism is future work.

• For the other 8 tasks, MetHyl+ fails because their input programs involve complex non-

linear expressions. As mentioned in Section 7, MetHyl+ uses an enumerative solver, namely

observational equivalence, to synthesize ?c required by the first and the third supplementary

rules when non-linear expressions are involved. Because the scalability of this solver is

limited, MetHyl+ times out while applying the first and the third rules when the target ?c is
non-linear and too large, e.g., x1 − dis(p1,p2) + dis(p1,p3) + dis(p2,p3) in Task 15-3, where

dis(p,q) is the abbreviation of (p.x −q.x )2+ (p.y−q.y)2. This fact shows that the effectiveness
of MetHyl can be further improved by designing efficient solvers for synthesizing ?c .

8.4 RQ2: Performance of Thinning and Supplementary Rules in MetHyl+

We manually analyze all intermediate results of MetHyl+ and summarize the performance of

thinning and each supplementary rule in Table 2, where Name lists the name of the corresponding
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rule, Exp lists the number of tasks where the rule achieves an exponential speed-up, Poly lists the

number of tasks where the rule achieves a polynomial speed-up, ⊥ lists the number of failed tasks,

and Time records the average time cost (seconds) on all tasks.

According to Table 2, thinning and the second rule produce all exponential speed-ups, while the

first rule and the third rule produce all polynomial ones. This result matches the target of each rule:

(1) the number of solutions, optimized by thinning, and the number states, optimized by the second

rule, can be exponential, and (2) the scale of solutions, optimized by the first rule, and the scale of

the states, optimized by the third rule, are usually polynomial.

Note that the effects of the first two rules seem to be insignificant in Table 2 because they are

usually delayed by the third rule. In many cases, the time cost of operating states forms a bottleneck

of the time complexity and thus the effects of the first two rules will not be revealed until the

third rule is applied. For instance, in the example discussed in Section 2, each of the three rules

reduces an O (n) component to O (1), but the overall time complexity would not change if any of

the components remains.

9 RELATEDWORK
Program Calculation. This paper is related to those studies for deriving dynamic programming

in program calculation. First, Bird and de Moor [1997]; de Moor [1995]; Morihata et al. [2014]; Mu

[2008] manually derive dynamic programming algorithms by thinning. Among them, Morihata

et al. [2014] notice that applying thinning solely may not be enough to derive an efficient dynamic

programming algorithm, and uses a rule namely incrementalization to optimize the program

generated by thinning. Compared to the supplementary rules proposed in our paper, the application

of this rule is still manual and is restricted to associative and commutative operators.

Second, there are several existing studies on automating thinning. Bird [2001]; Sasano et al.

[2000] focus only on a special kind of COPs namely maximum marking problem, where a partial

solution is a set of weighted items and the objective function is the total weight of the selected

items. Morihata [2011] focuses on a special kind of hylomorphisms namely sequential decision

procedures, which recurses strictly according to the structure of a list. In comparison, the scopes

of these three approaches are strictly more narrow than our approaches MetHyl and MetHyl+.
Only 9/37(24.3%) tasks in our dataset are instances of the maximum marking problem, and only

10/37(27.0%) tasks in our dataset use sequential decision procedures.

Last, there are other approaches for deriving dynamic programming beside thinning [Giegerich

et al. 2004; Lin et al. 2021; Liu and Stoller 2003; Pettorossi and Proietti 1996; Pu et al. 2011; Sauthoff

et al. 2011]. Most of them are manual or semi-automated. The only automated approach we know is

a transformation rule that automatically generates dynamic programming for a sequential decision

procedure on lists when several conditions are satisfied [Lin et al. 2021], of which the scope is

strictly more narrow than ours due to the requirement on sequential decision procedures.

Program Synthesis. There have been many synthesizers proposed for automatically synthesizing

algorithms or efficient programs [Acar et al. 2005; Farzan and Nicolet 2021; Fedyukovich et al. 2017;

Hu et al. 2021; Knoth et al. 2019; Morita et al. 2007; Smith and Albarghouthi 2016], but none of

them are for synthesizing dynamic programming algorithms.

Our approaches use program synthesizers to (1) synthesize preorders for thinning and Rule 2,

and (2) synthesize program fragments for Rule 1 and Rule 3. The specification of both tasks are

instances of relational specification, and thus our approach is related to Relish [Wang et al. 2018b],

a general solver for relational specifications. However, Relish cannot be applied to our tasks because

(1) Relish cannot optimize an objective function while synthesis, and (2) the finite tree automata
used by Relish does not directly support lambda expressions, which is included in our grammar.
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There are also many synthesizers for input-output specifications [Balog et al. 2017; Feser et al.

2015; Gulwani 2011; Ji et al. 2020; Osera and Zdancewic 2015; Wang et al. 2018a]. However, such

specifications do not exist in both synthesis tasks, and thus all these synthesizers are unavailable.

10 CONCLUSION
In this paper, we propose two novel synthesizersMetHyl andMetHyl+ for automatically synthesizing

efficient memoization for relational hylomorphism. We demonstrate the efficiency and effectiveness

of both approaches on a dataset including 37 tasks related to 17 COPs in our evaluation.

This paper is motivated by the theories in program calculation for deriving dynamic programming

algorithms. We notice that there are also studies for deriving other algorithms such as greedy
algorithm [Bird and de Moor 1993; Helman 1989] and branch-and-bound [Fokkinga 1991] from

relational hylomorphisms. Extending our approaches to support these algorithms is future work.
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A APPENDIX
In this section, we complete the proofs of the lemmas and the theorems in our paper.

Theorem A.1 (Theorem 3.6). Given a keyword preorder R of {(opi ,ki )}, define function NR (S ) as
the following, where range(k, S ) is the range of k on S , i.e., maxa∈S (k a) −mina∈S (k a), and max1 (S )
returns the largest element in S with default value 1.

NR (S ) B *
,

∏
i

range(ki , S )+
-

/
max

i

(
range(ki , S )

��� opi ∈ {≤, ≥}
)

• For any set S , |thin[R] S | ≤ NR (S ).
• There is an implementation of thin[R] with time complexity O (NR (S )size(R) +TR (S )), where
S is the input set, size(R) is the number of comparisons in R, TR (s ) is the time complexity of
evaluating all key functions in R for all elements in S .

Proof. Let K≤ be the set of key functions in R with operator ≤, and let k∗ be the key function in

K≤ with the largest range on S , i.e., argmax range(k, S ),k ∈ K≤ . Especially, when K≤ is empty, k∗

is defined as the constant function λx .0.
Let K = {k1, . . . ,km } be the set of key functions in R excluding k∗. According to the definition of

NR (S ), we have the following equality.

NR (S ) =
m∏
i=1

range(ki , S )

We start with the first claim. Define feature function fk as k1△ . . . △km . Then NR (S ) is the range
of fk . By the definition of the keyword preorder, we have the following formula:

fk a = fk b → (aRb ↔ k∗ a ≤ k∗ b)

In other words, for elements where the outputs of the feature function are the same, their order

in R is total. Therefore, the number of maximal values in S is no more than the range of the key

function, i.e., NR (S ).
Then, for the second claim, Algorithm 3 shows an implementation of thin. The time complexity

of the first loop (Lines 6-10) isO (TR (S )) and the time complexity of the second loop (Lines 11-20) is

O (NR (S )size(R)). Therefore, the overall time complexity of Algorithm 3 isO (NR (S )size(R) +TR (S )).

The remaining task is to prove the correctness of Algorithm 3. LetAx be the algorithm weakened

from Algorithm 3 by replacing the loop upper bound in Line 11 fromm to x . Besides, let Rx be the

keyword preorder {(opi , id )
x
i=1} ∪ {(=, id )

m
i=x+1}. Now, consider the following claim.

• After running Ax on set S , the value of Val[w] is equal to argmaxa k
∗ a,a ∈ S ∧wRx ( fk a).

If there is no such a exist, Val[w] is equal to ⊥.

If this claim holds, after running Am , i.e., Algorithm 3 on S , Val[fk a] = a if and only if a is a

local maximal in S . Therefore, we get the correctness of Algorithm 3.

To prove this claim, we make an induction onm. First, whenm is equal to 0, this claim holds

because only the element with the largest output of k∗ is retained while initializing Val (Lines 6-10).
Then, for any x ∈ [1,m], assume that the claim holds for Ax−1. When opx is equal to =, the

correctness of Ax−1 directly implies the correctness of Ax . Therefore, we consider only the case

where opx ∈ {≤} below.
Let Val′ be the value of Val after running Ax−1, and let Val be the value of Val after running

Ax . For any w ∈W and i ∈ [mix ,max ], let wi be the feature that ∀j , x ,wi .j = w .j and wi .x = i .
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Algorithm 3: An implementation of thin[R].
Input: A set S of elements.

Output: A subset including all maximal values in S .
1 Extract k∗ and fk = k1△ . . . △km from R;

2 opi ← the operator corresponding to ki ;

3 [mii ,mai ]← the range of ki on S ;

4 W← [mi1,ma1] × [mi2,ma2] × · · · × [mim ,mam];

5 ∀w ∈ W,Val[w]← ⊥;

6 foreach a ∈ S do
7 if Val[fk a] = ⊥ ∨ k∗ (Val[fk a]) ≤ k∗ a then
8 Vak[fk a]← a;

9 end
10 end
11 foreach i ∈ [1,m] do
12 if opi ∈ {=} then continue;
13 foreachw ∈ W in the decreasing order ofw .i do
14 if w .i =mii ∨ Val[w] = ⊥ then continue;
15 w ′ ← w ; w ′.i ← w .i − 1;

16 if Val[w ′] = ⊥ ∨ k∗ Val[w ′] ≤ k∗ Val[w] then
17 Val[w ′]← Val[w];

18 end
19 end
20 end
21 return {a | a ∈ S ∧ Val[fk a] = a};

According to Lines 11-20 in Algorithm 3, Val[w] is equal to the element with the largest output of

k∗ among Val′[ww .i ],Val′[ww .i+1], . . . ,Val′[wmax ]. (For simplicity, we define k∗ ⊥ as −∞).

Assume that the claim does not hold for Ax . Then, there existsw ∈ W and a ∈ S satisfying the

following formula.

k∗ Val[w] < k∗ a ∧wRx ( fk a)

=⇒ k∗ Val’
[
wkx a

]
< k∗ a ∧wkx aRx−1 ( fk a)

This fact contradicts with the inductive hypothesis and thus the induction holds. □

Theorem A.2 (Theorem 3.7). Given program (h= [[ϕ,ψ ]]F,o) and preorder R, for any instance i ,
(rд(thin[R] ◦ cup ◦ Pϕ,ψ )F,o) ∼i (h,o) if the following two conditions are satisfied.
(1) ∀s ∈ Sh i,∀p1,p2 ∈ h s,p1Rp2 → (o p1 ≤ o p2).
(2) ∀s ∈ Sh i,∀p1 = (p1,1, . . . ,p1,k ),p2 = (p2,1, . . . ,p2,k ), where p1,i and p2,i are partial solutions

of the same search state for all i ∈ [1,k], the following formula is always satisfied.
k∧
i=1

p1,iRp2,i → ∀p
′
1
,

(
p1 ↠h,s p

′
1
→ ∃p ′

2
,
(
p2 ↠h,s p

′
2
∧ p ′

1
Rp ′

2

))
(17)

Proof. For simplicity, we use r to denote rд(thin[R] ◦ cup ◦ Pϕ,ψ )F. Becauseψ in h is also used

in r , the search tree generated by r and h on instance i are exactly the same.

For simplicity, we use S1 ⊒R S2 to denote that elements in S1 dominates elements in S2 in the

sense of preorder R, i.e., ∀a ∈ S2,∃b ∈ S1,aRb. By the definition of thin, for any preorder R and any

set S , thin[R] S ⊒R S always holds.
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Let us consider the following claim.

• For any state s in Sh i , r s ⊆ h s ∧ r s ⊒R h s .

Let po be any solution with the largest objective value in h i . If this claim holds, there must be

a solution p∗ in r i such that poRp
∗
. By the precondition that (≤,o) ∈ R, o p∗ ≥ o po . Because

p∗ ∈ r i ⊆ h i , we have o p∗ = o po . Therefore, at least one solution with the largest objective value

are retained in r i , which implies that (r ,o) ∼i (h,o).
We prove this claim by structural induction on the search tree. First, r s ⊆ h s can be obtained by

the definition of rд and [[ϕ,ψ ]]F. Let us unfold the definition of h and r .

h = cup ◦ Pϕ ◦ cup ◦ P(car[F] ◦ Fh) ◦ψ

r = thin[R] ◦ cup ◦ Pϕ ◦ cup ◦ P(car[F] ◦ Fr ) ◦ψ

Starting from the inductive hypothesis, we have the following derivation.

∀s ′ ∈ Th s, r s
′ ⊆ h s ′

=⇒ ∀t ∈ ψ s, (car[F] ◦ Fr ) t ⊆ (car[F] ◦ Fh) t

=⇒ (cup ◦ P(car[F] ◦ Fr ) ◦ψ ) s ⊆ (cup ◦ P(car[F] ◦ Fh) ◦ψ ) s
=⇒ r s ⊆ h s

By the induction, we prove that ∀s ∈ Sh i, r s ⊆ h s .
The remaining task is to prove ∀s ∈ Sh i, r s ⊒R h s . For any state s , let be the set of partial

solutions constructed in r s before applying thin[R]. Let us consider another claim.

• For any state s in Sh i , Ps ⊒R h s .

If the second claim holds, we prove the first claim by

r s = thin[R] Ps ⊒R Ps ⊒R h s

Therefore, the remaining task is to prove the second claim via the inductive hypothesis. Suppose

this claim does not hold for state s .

Ps AR h s =⇒ ∃p ∈ h s,∀p ′ ∈ Ps ,¬pRp
′

(18)

Suppose partial solution p is constructed from partial solutions p1, . . . ,pk where pi is taken from

state si . By the inductive hypothesis, for each i ∈ [1,k], there exists p ′i ∈ r si such that pi?Rp
′
i . Let

p = (p1, . . . ,pk ) and p ′ = (p ′
1
, . . . ,p ′k ).

k∧
i=1

pi?Rp
′
i =⇒ ∀p

′
1
,
(
p ↠h,s p

′
1
→ ∃p ′

2
,p ′ ↠h,s p

′
2
∧ p ′

1
?Rp ′

2

)
=⇒ ∃p ′

2
,p ′ ↠h,s p

′
2
∧ p?Rp ′

2

=⇒ ∃p ′
2
∈ Ps ,p?Rp

′
2

(19)

Formula 19 contradicts with Formula 18. Therefore, we prove the second claim, and thus the

induction holds. □

Lemma A.3 (Lemma 4.1). Given instance i , for any two keyword preorders R1,R2 where all compar-
isons in R1 are included in R2, the following formula is always satisfied.

∀(p1,p2) ∈ CE (R1, i ), (p1,p2) < CE (R2, i ) ↔ ¬p1 (R2/R1)p2

where R2/R1 represents the keyword preorder formed by the comparisons in R2 that are not used in R1.
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Proof. We start with the ← direction. Suppose there is an example e in CE (R1, i ) satisfying
∃(p1,p2) ∈ e,¬p1 (R2/R1)p2. As the comparisons in R2/R1 are included in R2, this premise implies

∃(p1,p2) ∈ e,¬p1R2p2. By Formula 11, e cannot be a counter example for R2, i.e., e < CE (R2, i ).
For the→ direction, suppose there is an example e inCE (R1, i ) such that∀(p1,p2) ∈ e,p1 (R2/R1)p2.
Let (p1,1,p2,1), . . . , (p1,n ,p2,n ) be all pairs in example e , let p1 and p2 be the sequences of p1, j and

p2, j respectively. Be the definition ofCE, we have (1) ∀(p1,p2) ∈ e,p1R1p2, (2) the following formula.

∃p ′
1
,p1 ↠s p

′
1
∧ ∀p ′

2
,
(
p2 ↠s p

′
2
→ ¬p ′

1
R1p

′
2

)
=⇒ ∃p ′

1
,p1 ↠s p

′
1
∧ ∀p ′

2
,
(
p2 ↠s p

′
2
→ ¬p ′

1
R2p

′
2

)
(20)

By the definition of keyword preorders, we have the following derivation.

∀(p1,p2) ∈ e,p1R1p2 ∧ ∀(p1,p2) ∈ e,p1 (R2/R1)p2

=⇒ ∀(p1,p2) ∈ e,∀(op,k ) ∈ R2, (k p1)op (k p2)

=⇒ ∀(p1,p2) ∈ e,p1R2p2 (21)

Combining Formula 21 with 20, we know example e is in CE (R2, i ), and the other direction of

this lemma is proved. □

Lemma A.4 (Lemma 4.2). Given a set of instances I , for any two keyword preorders R1,R2 where all
comparisons in R1 are included in R2 and ∀i ∈ I ,CE (R2, i ) = ∅, there exists a comparison (op,k ) ∈
R2/R1 satisfying at least 1/( |R2 | − |R1 |) portion of examples in CE (R1, I ) = ∪i ∈ICE (R1, i ), i.e.,

���
{
(p1,p2) ∈ CE (R1, I )

��� ¬
(
(k p1)op (k p2)

)}��� ≥ |CE (R1, I ) |
/
( |R2 | − |R1 |)

where |R | represents the number of comparisons in keyword preorder R.

Proof. Let (op1,k1), . . . , (opn ,kn ) be comparisons in R2/R1. Define keyword preorders R
p
x as

R1 ∪ {(opj ,kj )
x
j=1}, and define Rax as R1 ∪ {(opx ,kx )}. By the definition of keyword preorders, this

lemma is equivalent to the following formula.

∃x ∈ [1,n], ���CE (R1, I )
/
CE (Rax , I )

��� ≥
|CE (R1, I ) |

n
(22)

We prove Formula 22 in two steps. First, we prove that ∀x ∈ [1,n] satisfies the following formula.

���
(
CE (R

p
x , I )/CE (R1, I )

) / (
CE (R

p
x−1, I )

/
CE (R1, I )

) ��� ≤ ���CE (R1, I )
/
CE (Rax , I )

��� (23)

For any x , letC
p
x be the set in the left-hand side and letCa

x be the set in the right-hand side. Then,

by Lemma 4.1,

e ∈ C
p
x ⇐⇒ ∀(p1,p2) ∈ e,∀j ∈ [1,x − 1], (kj p1)opj (kj p2)

∧ ∃(p1,p2) ∈ e,∃j ∈ [1,x],¬(kj p1)opj (kj p2)

=⇒ ∃(p1,p2) ∈ e,¬(kx p1)opx (kx p2)

⇐⇒ e ∈ Ca
x

Therefore, |C
p
x | ≤ |C

a
x | and thus Formula 23 is proved.

Then, we prove the following formula.

∃x ∈ [1,n], |C
p
x | ≥

|CE (R1, I ) |

n
(24)
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BecauseCE (R2, I ) = ∅, we knowC
p
1
∪C

p
x∪· · ·∪C

p
n = CE (R1, I ). Therefore,

∑n
i=1 |C

p
i | = |CE (R1, I ) |.

Let x∗ be the index where |C
p
x | is maximized.

n ���C
p
x ∗
��� ≥

n∑
i=1

���C
p
i
��� = |CE (R1, I ) |

Therefore, we prove that Formula 24 holds for x = x∗.
As the combination of Formula 23 and Formula 24 implies Formula 22, the target lemma is

proved. □

Theorem A.5 (Theorem 4.3). Given program (h,o), a set of instances I and a grammar G for
available comparisons, if there exists a keyword preorder R satisfying (1) ∀i ∈ I ,CE (R, i ) = ∅, and
(2) R is constructed by (≤,o) and some comparisons in G, MetHyl must terminate and return such a
keyword preorder.

Proof. Let R be any solution satisfying the three conditions. According to Algorithm 1, given a

finite set of comparisons and a size limit, function BestPreorder always terminate.

We name an invocation of BestPreorder good if the comparison space including all comparisons

used in R/{(≤,o)} and nc is no smaller than size(R) − 1. According to the iteration used to decideC
and nc , for any t , there will be t good invocations finished within finite time.

Let (op1,k1), . . . , (opn ,kn ) be an order of comparisons used in R/{(≤,o)} such that for any

x ∈ [1,n], (opx ,kx ) will be a valid comparison for function CandidateComps in the xth turn if

(op1,k1), . . . ,(opx−1,kx−1) are selected in the previous terms. According to Lemma 4.1, such an

order must exist.

Suppose the error rate of CandidateComps is at most c , i.e., the probability for CandidateComps
to exclude a valid comparison is at most c . For a good invocation of BestPreorder, R will be found

if ∀x ∈ [1,n], (opx ,kx ) is not falsely excluded in the xth turn by CandidateComps. Therefore, the
probability for R to be found in a good invocation is at least c ′ = (1 − c )n , which is a constant.

So, the probability forMetHyl not to terminate after t good invocations is at most (1−c ′)t . When

t → +∞, this probability converges to 0. □

Lemma A.6 (Lemma 5.1). Given instance i and program prog
1
in Form 10, let prog′

1
be result of

Rule 1. If for any query q and constructorm, Formula 13 and Formula 14 are satisfied respectively,
prog

1
∼i prog′1 holds.

∀e ∈ RE (q, i ),q e = ?q[q] (F[q]?fp e ) (25)

∀e ∈ RE (m, i ), ?fp (m e ) = ?c[m] (F[m]?fp e ) (26)

Proof. Recall the form of prog
1
and prog′

1
as the following.

prog
1
= (rд((thin ?R) ◦ cup ◦ Pϕ,ψ )F,o)

prog′
1
= (rд((thin R′) ◦ cup ◦ Pϕ ′,ψ )F, ?q[o])

Comparing prog′
1
with prog

1
, there are several expression-level differences: (1) all key functions in

?R are replaced with the corresponding ?q, (2) the objective function is replaced with ?q[o], (3) all
solution-related functions in ϕ are replaced with the corresponding ?q and ?c .
Let e1, e2 be the small-step executions of prog

1
and prog′

1
on instance i , and let e[k] be the kth

program in execution e . Let us consider the following claim.

• For any k , e1[k] will be exactly the same as e2[k] after (1) replacing all solution-related

functions with the corresponding ?q and ?c , and (2) replacing all solutions with the outputs

of ?fp .
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If this claim holds, the last programs in e1 and e2 must be the same because they are the outputs of

prog
1
and prog′

1
and include neither functions nor solutions. So this claim implies prog

1
∼i prog′1.

We prove this claim by induction on the number of steps. When k = 0, the claim directly holds

because there is no solution constructed and the correspondence of functions is guaranteed by the

construction of prog
1
.

Then for any k > 0, consider the kth evaluation rule applied to e1 and e2. By the inductive

hypothesis, these two evaluation rules must be the same.

• If this evaluation rule relates to partial solutions, it must be the evaluation of a solution-related

function. By the inductive hypothesis, (1) the scalar values in both inputs are exactly the

same, and (2) the partial solutions used in e2 are equal to the outputs of ?fp on the partial

solutions used in e1. Therefore, the examples used in the synthesis task of Step 2 ensures

that the outputs are still corresponding. At this time, the examples used in the synthesis task

ensure that the evaluation result is still corresponding.

• If this evaluation rule does not relate to partial solutions, by the inductive hypothesis, the

evaluation in e1 and e2 must be exactly the same.

Therefore, the induction holds, and thus the claim holds. □

Lemma A.7 (Lemma 5.2). Given instance i and program (r ,o), where r is a recursive generator,
(r ?fm ,o) ∼i (r ,o) if for any two states s1, s2 ∈ (Sr i ), r s1 , r s2 → ?fm s1 , ?fm s2.

Proof. Consider the following claim.

• Each time when r ?fm s returns, (1) the results is equal to r s , and (2) for any state s ′ ∈ Sr i ,
there is result recorded with keyword ?fm s ′ implies that the results is r s ′.

If the claim holds, the lemma is obtained by r ?fm i = r i .
Let r ?fm s1, . . . , r

?fm sn be all invocations of r ?fm during r ?fm i and suppose they are ordered

according to the returning time. We prove the claim by induction on the prefixes of this sequence.

For the empty prefix, the claim holds as the memoization space is empty.

Now, consider the kth invocation r ?fm sk . There are two cases. In the first case, there has been a

corresponding result recorded in the memoization space. At this time, by the inductive hypothesis,

this result must be equal to r sk , and thus the claims still hold when r ?fm returns on sk .
In the second case, there has not been a corresponding result recorded. By the inductive hy-

pothesis, the results of the recursions made by r ?fm sk must be the results of the corresponding

recursions made by r sk . Therefore, the execution of r ?fm sk must be exactly the same with r sk
and thus r ?fm sk = r sk . By the examples used to synthesize ?fm , we know that for any other state

s ∈ Sr i , ?fm s = ?fm sk implies that r s = r sk , i.e., the memoized result in r ?fm sk .
Therefore, the induction holds, and thus the claim holds.

□

Theorem A.8 (Theorem 5.3). Given input program (h,o) where h is a relational hylomorphism
and a set of instances I , let p∗ be the program generated by MetHyl+ with I . Then ∀i ∈ I , (h,o) ∼i p∗.

Proof. Because the correctness of Step 4 can be proved in the same way as Step 2, this theorem

is directly from Theorem 3.7, Lemma 5.1, Lemma 5.2, and the correctness of Step 4. □

Theorem A.9 (Theorem 5.4). Given input ([[ϕ,ψ ]]F,o) and grammar G specifying the program
space for synthesis tasks, the program generated by MetHyl+ must be pseudo-polynomial time if the
following conditions are satisfied: (1) ϕ, ψ and programs in G runs in pseudo-polynomial time, (2)
each value and the size of each recursive data structure generated by the input program are pseudo-
polynomial, (3) all operators in G are linear, i.e., their outputs are bounded by a linear expression with
respect to the input.
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Proof. The time complexity of the resulting program can be decomposed into four factors: (1)

the number of recursive invocations on the generator, (2) the maximum number of partial solutions

returned by each invocation, (3) the time complexity of each invocation on the generator, and (4)

the time complexity of each invocation on the scorer. To prove this theorem, we only need to prove

that all of these four factors are pseudo-polynomial time.

First, we prove that for any program in G that returns a scalar value, its range is always pseudo-

polynomial. For any such program p in G, let fp (n,w ) be a polynomial representing that the time

cost of p is at most fp (n,w ) when n scalar values in range [−w,w] are provided as the input.

By the third precondition, there exists a constant c such that for each operator ⊕ in G, for any
input x and any output value y ∈ ⊕x , |y | is always at most c

∑
x ∈x |x |.

Suppose the size of program p is sp , which is a constant while analyzing the complexity of p. Now,
suppose n scalar values in range [−w,w] are provided as the input to p. After executing the first
operator, the sum of all available values is at most fp (n,w )×cnw , because there are at most fp (n,w )
values due to the time limit and each value is at most cnw according to the third precondition. Then,

after the second operator, this sum increases to fp (n,w ) × c ( fp (n,w ) × cnw ) = c2 fp (n,w )2 × nw .

In this way, we know that after executing all sp operators, the sum of all available values is at

most csp fp (n,w )sp ×nw . Because sp is a constant, this upper bound is still pseudo-polynomial with

respect to the input.

Second, we prove that the first two factors are pseudo-polynomial. The first factor is bounded by

the range of ?fm , which is equal to the product of the ranges of key functions in ?fm . The second
factor is bounded by the number of partial solutions returned by thin[?R]. By Theorem 3.6, this

value is also bounded by the product of the ranges of key functions in ?R. Because the number

of key functions in ?fm and ?R are constants, we only need to prove that the range of each key

function is pseudo-polynomial.

• For key functions in ?fm , by the second precondition, in the input program, both the size of

a state and values in a state are pseudo-polynomial with respect to the global input. By our

first result, we obtain that the range of each key function in ?fm is pseudo-polynomial.

• For key functions in ?R, by the second precondition, in the input program, both the size of a

partial solution and values in a partial solution are pseudo-polynomial. By our first result, the

scale of the new partial solution, i.e., the output of ?fp , must also be pseudo-polynomial. By the

first result again, we obtain that the range of each key function in ?R is pseudo-polynomial.

Third, we prove that the third factor is pseudo-polynomial. According to Section 5, the generator

in the resulting program must be in the following form:

rд(thin[?R] ◦ cup ◦ Pϕ ′,ψ ′)

Therefore, the time complexity of each invocation can be further decomposed into four factors:

(3.1) the time cost of thin[?R], (3.2) the time cost of ϕ ′, (3.3) the time cost ofψ ′, and (3.4) the number

of invocations of ϕ ′.

• According to Theorem 3.6, Factor 3.1 is bounded by the ranges of the key functions in ?R,
which has been proven to be pseudo-polynomial.

• For Factor 3.1 (3.2), the time cost of ϕ ′ (ψ ′) is bounded by the time cost of ϕ (ψ ) and all

inserted program fragments ?q and ?c in Step 2 (Step 4). By the first precondition, their

time costs are all pseudo-polynomial with respect to the new state, which has also been

proven to be pseudo-polynomial in both values and scale. Therefore, the time cost of ϕ ′ (ψ ′)
is pseudo-polynomial.

• For Factor 3.3, by the first condition, the number of transitions (denoted as nt ) is pseudo-
polynomial. The number of partial solutions returned by each recursive invocation (denoted
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as np ) has been proven to be pseudo-polynomial, and the number of states (denoted by ns )
involved by a single transition is a constant. Therefore, the number of invocations of ϕ ′,
which is bounded by nt × n

ns
p , is also pseudo-polynomial.

Therefore, we prove that the third factor is also pseudo-polynomial with respect to the global input.

At last, the fourth operator is also pseudo-polynomial because (1) the number of solutions and

the scale of solutions are both pseudo-polynomial, and (2) the time complexity of the objective

function, which is a program in G, is pseudo-polynomial by the first precondition.

In summary, all four factors are pseudo-polynomial, and thus we prove the target theorem. □
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