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Abstract
Algorithm synthesis is a newly emerging branch of program

synthesis, targeting to automatically apply a predefined class

of algorithms to a user-provided program. In algorithm syn-

thesis, one popular topic is to synthesize divide-and-conquer-

style parallel programs. Existing approaches on this topic rely

on the syntax of the user-provided program and require it to

follow a specific format, namely single-pass. In many cases,

implementing such a program is still difficult for the user.

Therefore, in this paper, we study the black-box synthesis for

divide-and-conquer which removes the requirement on the

syntax and propose a novel algorithm synthesizer AutoLifter .
Besides, we show that AutoLifter can be generalized to other

algorithms beyond divide-and-conquer. We propose a novel

type of synthesis tasks, namely lifting problems, and show

that AutoLifter can be applied to those algorithms where

the synthesis task is an instance of lifting problems. To our

knowledge, AutoLifter is the first algorithm synthesizer that

generalizes across algorithm types. We evaluate AutoLifter
on two datasets containing 57 tasks covering five different

algorithms. The results demonstrate the effectiveness of Au-
toLifter for solving lifting problems and show that though

AutoLifter does not access the syntax of the user-provided
program, it still achieves competitive performance compared

with white-box approaches for divide-and-conquer.

1 Introduction
Algorithm synthesis is a newly emerging branch of program

synthesis. An algorithm synthesizer targets a predefined

class of algorithms, such as divide-and-conquer [Farzan and
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Nicolet 2017, 2021; Morita et al. 2007], dynamic program-

ming [Lin et al. 2019], and incrementalization [Acar et al.

2005], and its task is to automatically apply these algorithms

to a user-provided program. Algorithm synthesis imposes

significant challenges for synthesizers because an algorithm

often involves complex control structures and is usually

large.

The most popular topic on algorithm synthesis is to auto-

matically synthesize divide-and-conquer-style parallel pro-

grams for lists. Given a target function that takes a list as

input and produces a value as output, a divide-and-conquer

algorithm splits the input list into two sublists, recurses into

them in parallel, and at last merges the result together via a

combinator. In general, the outputs of the target function on

the sublists may not be enough for calculating the output

of the function on the whole list. For these functions, the

algorithm synthesizer needs to find proper functions, namely

lifting functions, which produce supplementary lifting values
on the sublists such that the output of the target function on

the whole list can be calculated.

To find lifting functions, existing approaches [Farzan and

Nicolet 2017, 2021; Fedyukovich et al. 2017; Raychev et al.

2015] require the original program to be single-pass. A single-

pass program on lists is an instance of λl : [E].(fold ?⊕ ?e l ),
where ?e : D is an initial state and ?⊕ : D × E → D is a

function that updates the state with an element in the list.

The single pass program visits all elements in the input list l
in order, and updates the state via ?⊕. Existing approaches

find the lifting functions via deductive methods. They use

pre-defined rules to transform ?⊕ and ?e , and either extract

lifting functions directly or decompose the synthesis task

into simpler subtasks by analyzing the input program. As

a result, for these approaches, the efficiency of the synthe-

sized program depends on the input program, and the input

program has to be efficient to obtain an efficient result.

However, in many cases, providing a single-pass imple-

mentation can be difficult for the user. On the one hand, an

efficient single-pass implementation still requires the user

to find proper lifting functions. As we shall show in Section

7.3, on a dataset collected from previous work, the number

of lifting values required to write an efficient single-pass

https://doi.org/
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program accounts for 41.1%-60.6% of the number of lifting

values required to directly write a divide-and-conquer-style

parallel program. On the other hand, implementing a single-

pass function is error-prone even for experts. The dataset

used by Farzan and Nicolet [2021] contains two bugs that

were introduced when the authors manually rewrote the

original program into a single-pass program
1
.

To further reduce the burden on the user, we study a more

general synthesis task by removing the requirement on the

syntax of the original program. We name this problem as

black-box algorithm synthesis for divide-and-conquer.
Following previous studies on program calculation [Bird

and de Moor 1997], we use algorithmic tactics to simplify

the synthesis task. Program calculation techniques aim to

establish an algebra for human users to derive programs.

In this domain, an algorithmic tactic summarizes a class of

algorithms as an algorithmic template with variables repre-

senting task-related program fragments and an application
condition for these variables to form a correct program. We

obtain a program by filling the algorithmic template with

a proper assignment to the variables satisfying the applica-

tion condition. Because the main control structure is usually

captured by the template, the assignment is usually simpler

than the result in both the control structure and the scale.

Guided by the tactic for divide-and-conquer-style paral-

lelization [Cole 1995], the task of synthesizing divide-and-

conquer programs is converted to automatically synthesize

an assignment to the variables satisfying the corresponding

application condition. Though the conversion has greatly

simplified the task of algorithm synthesis, due to the black-

box setting of our approach, there are still significant chal-

lenges on both synthesis and verification.
For synthesis, the assignment to variables can still be large.

In our evaluation, the program in the assignment has up to

157 AST nodes. In contrast, applicable synthesis techniques

are limited. First, the deductive methods used in previous

work become unavailable because the original program is

no longer guaranteed to be single-pass. Second, most state-

of-the-art inductive methods, such as λ2 [Feser et al. 2015]
and witness functions [Polozov and Gulwani 2015], cannot

be used because (1) the application condition includes the

composition of two variables, and (2) input-output examples

of one variable cannot be extracted from the condition.

For verification, most synthesizers rely on a verifier to

determine the correctness of the synthesis result. However,

existing verification techniques hardly scale up to synthe-

sizing divide-and-conquer because the verification involves

data structures and has no assumption on the syntax.

The first contribution of our paper is an efficient synthe-

sizer, namelyAutoLifter , for solving the application condition
corresponding to divide-and-conquer.

1
See the footnote on page 10 for details.

For synthesis, AutoLifter combines deductive methods and

inductive methods. In the deductive part, AutoLifter includes
two novel deductive rules, namely decomposition and decou-
pling, which are based on the structure of the application

condition only. The deductive part generates several sub-

tasks, each synthesizing for a part of a single functional

variable. Then, the inductive part solves these tasks by ei-

ther PolyGen [Ji et al. 2021], a state-of-the-art synthesizer

for input-output examples, or observational covering, a novel
enumerative strategy we propose in this paper.

For verification, due to the difficulty of modeling, Au-
toLifter verifies in a probabilistic way. We show that the

inductive solvers used by AutoLifter are all Occam solvers [Ji

et al. 2021]. By combining Occam solvers and an iteratively

increasing number of examples, we ensure AutoLifter has a
configurable probabilistic guarantee on the correctness.

The second contribution of this paper is to generalize

AutoLifter to other algorithmic tactics beyond divide-and-

conquer. Since AutoLifter uses only the structure of the ap-

plication condition and has no requirement on the syntax of

the input program, AutoLifter can be naturally generalized

to synthesize for all algorithmic tactics whose application

condition has a similar structure to divide-and-conquer. Such

tactics cover different types of algorithms for different types

of problems, such as greedy algorithms for longest segment

problems [Zantema 1992], dynamic programming algorithms

for maximum weightsum problems [Sasano et al. 2000], a

data structure for Klee’s rectangle problems [Bentley 1977],

etc. We define these tasks uniformly as lifting problems and
generalize AutoLifter to all lifting problems. To our knowl-

edge, no existing approach on algorithm synthesis has such

ability to generalize across algorithm types.

The third contribution of this paper is a set of experiments

evaluating the performance of AutoLifter . First, to evaluate

the effectiveness of AutoLifter on synthesizing divide-and-

conqer algorithms, we collect a dataset of 36 tasks from pre-

vious work [Bird 1989; Farzan and Nicolet 2017, 2021; Morita

et al. 2007]. We compare AutoLifter with a state-of-the-art

while-box solver, Parsynt [Farzan and Nicolet 2017, 2021], on

this dataset. The results show that though AutoLifter does
not enforce specific requirements on the syntax of the origi-

nal program, it can still achieve competitive, or even better,

performance compared with white-box solvers. Second, to

evaluate the effectiveness of AutoLifter on other tactics, we

collect a dataset of 22 tasks from an existing publication

on program calculation [Zantema 1992] and an online con-

test platform for competitive programming (codeforces.com),

covering 4 other algorithmic tactics. The results show that

AutoLifter is able to solve all of these tasks with an average

time cost of 7.52 seconds. At last, we establish a case study

on two tasks in our dataset, which demonstrates AutoLifter
(1) can find results that are counterintuitive on syntax, and

(2) can solve problems that are hard even for world-level

players in competitive programming.

codeforces.com
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1 import Data.List

2 -- Original program

3 p l = maximum (map sum
[t | i <- inits l, t <- tails i])

4 -- Variables

5 f l = (mps l, mts l, sum l)

6 where

7 mts = maximum .(scanr (+) 0)

8 mps = maximum .(scanl (+) 0)

9 c (mss1 , (mps1 , mts1 , sum1))

10 (mss2 , (mps2 , mts2 , sum2)) =
(mss3 , (mps3 , mts3 , sum3))

11 where

12 mss3 = maximum [mss1 , mss2 , mts1 + mps2]

13 mps3 = max mps1 (sum1 + mps2)

14 mts3 = max (mts1 + sum2) mts2

15 sum3 = sum1 + sum2

16 -- Algorithmic template

17 dc' l =

18 if length l <= 1 then (p l, f l)

19 else c (dc ' (take m l)) (dc ' (drop m l))

20 where m = div (length l) 2

21 dc = fst.dc '

Figure 1. A divide-and-conquer program for mss.

To sum up, this paper explores the problem of black-box
algorithm synthesis and makes the following contributions.

• Proposing an efficient black-box synthesizer, AutoLifter ,
for synthesizing divide-and-conquer programs. (Section 4)

• Defining the lifting problem that captures the synthesis

tasks for multiple algorithmic tactics and generalizing Au-
toLifter to lifting problems. (Section 5)

• Conducting an evaluation on two datasets and 57 tasks,

and showing the effectiveness of AutoLifter . (Sections 6, 7)

2 Algorithmic Tactic for D&C
We introduce the algorithmic tactic for divide-and-conquer

via a classical problem, maximum segment sum (mss):

Given list l , the task is to select a segment (i.e., consecutive
subsequence) s from l and maximize the sum of elements in s .

Function p at line 3 in Figure 1 implements an exhaustive

search for mss in Haskell. This algorithm enumerates all seg-

ments of the original list, calculates their sums, and returns

the maximum one. Concretely, inits returns all prefixes of a
list, tails returns all suffixes of a list, and thus t enumerates

over all suffixes of all prefixes, i.e., all segments.

The exhaustive search algorithm is inefficient, as its time

complexity is O (n3), where n is the length of the input list.

To optimize the performance of the algorithm, the rest of

the code in Figure 1 shows an efficient divide-and-conquer-

style parallel program, implemented as function dc (line 21).

The basic idea of the algorithm is to divide the list into two

halves, recursively apply itself to the two halves, and use

a combinator to obtain the maximum segment sum of the

original list from the results of the two halves (Line 19).

Because it is not enough to calculate the maximum seg-

ment sum of the whole list from those of the two halves,

the algorithm uses a function f to calculate supplementary

information needed for the combinator (Line 19). In this case,

the supplementary information includes the maximum tail

sum (mts) and maximum prefix sum (mps), as the maximum

segment could be formed by a tail of the first half and a

prefix of the second half. To further calculate mts and mps
of the whole list, another value, the element sum is also

calculated (lines 5-8). In this paper, we name mts, mps, sum
as lifting functions, whose result is used during divide-and-

conquer, and name f as a lifting scheme, which summarizes

all necessary lifting functions in a tuple.

Based lifting scheme f, function c calculates the maximum

segment sum as well as the outputs of the three involved

lifting functions by combining those of the two halves (lines

9-15). Since the two invocations to dc’ (Line 19) can be

executed in parallel, the time complexity of this algorithm is

O (n/t ) when t = O (n/ logn) processors are given.
This program also shows the algorithmic tactic for divide-

and-conquer [Cole 1995], which guides the user to rewrite a

program p as a divide-and-conquer-style parallel program.

• First, the user needs to find two auxiliary functions f and

c . Function f is a lifting scheme that calculates the outputs

of lifting functions needed for the divide-and-conquer, and

c is a combinator that calculates values of p and f from

the results of the recursive invocations. For correctness,

f and c should satisfy the following formula for all lists

l1, l2.

(p (l1 ++ l2), f (l1 ++ l2)) = c
(
(p l1, f l1) , (p l2, f l2)

)
(1)

where l1 ++ l2 represents the concatenation of l1 and l2.
• Second, the user needs to fill programs p, f , and c to a

template, which has been shown in lines 17-21 of Figure 1.

That is, with an algorithmic tactic, the user only needs to

find the auxiliary functions satisfying the application condi-

tion but does not need to know the details of the algorithm.

Formally, an algorithmic tactic is a pair A = (φ,T ):

• Application condition φ is a formula with respect to the

original program p and several variables д1, . . . ,дn . To
apply the algorithmic tactic, the user is required to find a

valid assignment for д1, . . . ,дn .
• Algorithmic template T is a partial program with some

holes remaining.T can be completed by filling these holes

with p and a valid assignment for д1, . . . ,дn .

3 Overview
In this paper, we introduce the main idea of AutoLifter using
the mss problem mentioned in Section 2. The original pro-

gram and one target program of this task have been shown

as program p and dc (Lines 5-21) in Figure 1 respectively.
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1 import Data.List

2 e = (0, 0)

3 oplus (mss1 , mts1) x =
(max mss1 (mts1 + x), max 0 (mts1 + x))

4 sp l = fst (foldl oplus e l)

Figure 2. A single-pass program for mss.

3.1 Shortage of White-Box Approaches
To synthesize program dc, one major challenge is to find

the lifting functions, i.e., mps, mts, and sum. Some white-box

approaches [Farzan and Nicolet 2017, 2021; Fedyukovich et al.

2017; Raychev et al. 2015] are able to find these functions.

However, they require the original program to be single-pass,

and thus cannot be directly applied to program p. Moreover,

they also rely on the efficiency of the original program. To

synthesize a program as efficient as dc, they require the

original program to be linear-time.

Figure 2 shows a valid input sp for these approaches. Start-
ing from the initial value e (Line 2), sp scans the input list l
from left to right and updates the result via the loop body

oplus after visiting each element x (Line 3). Similar to dc,
since mss itself is not enough to obtain the next mss during
the loop, sp uses lifting function mts.

Compared with p (Line 3 in Figure 1), sp (Lines 2-4 in Fig-

ure 2) is a much more difficult for the user to implement. On

the one hand, to ensure efficient single-pass implementation,

the user has to find the lifting value mts. It is actually a simi-

lar task with finding lifting functions for divide-and-conquer.

On the other hand, the user needs to capture the change of

mts and mps during the loop. For example, the user must

recognize that mts is at least 0 during the loop. Such a task

is sometimes error-prone.

Therefore, though these white-box approaches synthesize

a divide-and-conquer program from a single-pass program,

there is still a significant burden remaining to the user.

3.2 Overview on AutoLifter
Different from existing white-box approaches, AutoLifter
makes no assumption on the syntax of the original program.

Therefore, program p is a valid input for AutoLifter . By the

algorithmic tactic discussed in Section 2, the algorithm syn-

thesis task is simplified to finding functions f and c such that
Equation 1 is satisfied for all lists l1, l2. Figure 3 shows the
procedure for AutoLifter to solve this task and some results

for the mss task, where p is equal to p (Line 1 in Figure 1).

Deductive Part. The first challenge is on the scale of the

target programs. As shown in Figure 3, the target f and c
use 7 and 21 operators respectively, which are far beyond

the scope of state-of-the-art synthesizers for list-operating

programs. For example,DeepCoder [Balog et al. 2017], a state-
of-the-art synthesizer on lists, times out on ≥ 40% tasks in

a dataset for synthesizing list-operating programs with 5

operators, even when the time limit is one hour.

AutoLifter uses two deductive rules to solve this challenge.
Given a synthesis task, the deductive rules split it into sub-

tasks and merge the results of subtasks into a solution to the

original task. In each subtask, only a part of a single target

program is synthesized, and thus the scale is reduced.

The first rule decomposition splits the original task (Task

1 in Figure 3) according to the usage of lifting functions. In

our example, there are 3 lifting functions mps, mts and sum.

They can be divided into two lifting schemes f1 and f2.

• ( f1) The first scheme provides supplementary information

for the input program p, including mps and mts.
• ( f2) The second scheme provides supplementary informa-

tion for calculating other lifting values, including sum.

Rule decomposition generates two subtasks (Task 2 and Task

5 in Figure 3) for synthesizing f1 and f2 respectively.

• Group f1 provides supplementary information only for p,
so we remove the second component f (l1 ++ l2) on the

left-hand side of Task 1, resulting in Task 2.

• Group f2 provides supplementary information for calcu-

lating f1, and its logic specification is shown as Task 5.

Because f1 has already provided the supplementary infor-

mation for p, p is no longer considered at the left-hand

side. But p still occurs at the right-hand side as its output

can be used to calculate the outputs of lifting functions.

Note that Task 5 has the same form as Task 1, and thus can

be solved by applying decomposition recursively.

The second rule decoupling decouples the composition of

variables at the right-hand side of Task 2 (and other similar

subtasks). Starting from Task 2, decoupling first extracts the

specification for f1 by requiring the existence of c .

∃c1,∀l1, l2,p (l1 ++ l2) = c1 ((p l1, f1 l1), (p l2, f1 l2))

Since c1 is a function, i.e., the same input always leads to

the same output, the above specification is equivalent to the

formula of Task 3. Note that such an equivalency depends

on the fact that c can be any function. In practice, c is always
constrained by grammar, and thus Task 5 is only a necessary

condition. We prove that when the grammar satisfies some

properties, the effectiveness of decoupling is still guaranteed.

More details on this point can be found in Section 4.2.

After finding f1, the corresponding c1 can be synthesized

by substituting f1 into Task 2, resulting in Task 4.

Inductive Part. After the deductive system, there are two

types of subtasks remaining. The first type is for a part of

the lifting scheme f (e.g., Task 3) and the second type is

for a part of the combinator c (e.g., Task 4). AutoLifter uses
inductive methods to solve these subtasks.

We start the discussion from the second type of subtasks.

There are two noticeable properties in Task 4:
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Figure 3. The procedure for AutoLifter to synthesize a divide-and-conquer program for original program p. We list the

abbreviations of some synthesis results for the mss task at the bottom, where mps l ,mts l ,max(x ,y) are abbreviations for
max (scanl (+) l ), max (scanr (+) l ) and ite (x < y) x y respectively. More details on the grammars can be found in Section 6.

• Input-output examples of c1 can be extracted from Task 4.

For any two lists l1, l2, the input and the output of c1 are
((p l1, f1 l2), (p l2, f1 l2)) and p (l1 ++ l2) respectively.
• Though Task 4 is list-related, input-output examples of

c1 involve only the outputs of the original program and

lifting functions, which are usually scalars in practice.

Therefore, AutoLifter uses PolyGen [Ji et al. 2021] to solve

Task 4 as well as all subtasks in the second type. PolyGen is

a state-of-the-art synthesizer for conditional linear integer
arithmetic and is based on input-output examples.

In contrast, extracting input-output examples is difficult

for the first type of subtasks such as Task 3. The formula of

Task 3 is a metamorphic relation, i.e., a necessary condition

of f over multiple inputs, and thus does not give a unique

output given an input. Therefore, AutoLifter solves the first
type of subtasks based on observational equivalence [Udupa
et al. 2013], a state-of-the-art algorithm that does not rely on

input-output examples. To improve observational equivalence,
we further propose a novel pruning strategy, observational
covering, on top of observational equivalence.

We first introduce how observational equivalence works. It
starts from atomic programs, and repeatedly combines enu-

merated programs to form larger programs until a valid pro-

gram is found. During this procedure, if a smaller program

e outputs the same as a larger program e ′ on a set of prede-

termined input examples, i.e., observationally equivalent, e ′

will be pruned off from the set of enumerated programs.

Observational covering shares the same idea of pruning off

larger programs that do not contribute more than a smaller

program with respect to a set of pre-determined examples,

and further utilizes the fact that a lifting scheme is a tuple

of lifting functions. By transforming the formula of Task 3,

we obtain the following equivalent formula.(
∧i ∈{1,2} (p li = p l ′i ) ∧ p (l1 ++ l2) , p (l ′

1
++ l ′

2
)
)

−→ ∨i ∈{1,2} ( f1 li , f1 l
′
i )

That is, when the input lists satisfy some condition, lifting

scheme f1 should return different results on some pair of

input lists. Because f1 is a tuple of lifting functions, f1 returns
different results when any of the lifting functions return

different results. Therefore, a lifting function is not useful if

the set of examples it satisfied in the above formula is covered
by an existing lifting function.

Based on the above analysis, if there are two enumerated

programs e, e ′ satisfying (1) e is smaller than e ′ and (2) e sat-
isfies all examples satisfied by e ′, e ′ will not be considered as
a lifting function to form a lifting scheme. For example, when

the example is ([1], [1], [−1, 1], [1]), program λl .(max l + 1)
will be pruned off by λl .max l .
Efficiency of the Result. One important detail is that not

all solutions to Task 1 can lead to an efficient divide-and-

conquer program. For example, it is easy to verify that f l B l
and c ((_, l1), (_, l2)) B mss (l1 ++ l2) form a solution to Task
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1. However, after filling them into the template, the time

complexity of the result is still O (n3).
To guarantee the efficiency of the result, AutoLifter uses

syntax-guided synthesis [Alur et al. 2013].AutoLifter is config-
ured by two grammarsGf andGc . While synthesizing f and

c , only programs in Gf and Gc are considered, respectively.

It can be proven that the time complexity of the result

is guaranteed to be O (n/t ) on t = O (n/ logn) processors
when the combinator c runs in constant-time. AutoLifter
guarantees this point by making two assumptions.

1. Operators on scalar values in Gc and Gf are all constant

time (e.g., +,−, and, or and the branch operator ite).
2. Original program p and programs in Gf always return a

constant number of scalar values.

Through these assumptions, scheme f l B l is excluded, as
it returns a list instead of a constant number of scalar values.

Verification. Both of the two inductive synthesizers require

a verifier to determine the correctness of the result. How-

ever, it is difficult to use off-the-shelf verifiers in either Task

3 or Task 4, because mss is complex. To address this prob-

lem, AutoLifter verifies in a probabilistic way and provides a

configurable probabilistic guarantee on the correctness.

The verification is based on Occam solvers [Ji et al. 2021].
An important property of Occam solvers is that, when the

number of examples is larger than a polynomial to the size

of the smallest valid program, the program synthesized by

an Occam solver has a probabilistic guarantee on correct-

ness [Blumer et al. 1987]. We prove that the inductive solvers

used by AutoLifter are Occam solvers, and thus use this prop-

erty to build the verifier. The main challenge here is to de-

termine a proper number of examples provided to the solver,

as the size of the smallest valid program is unknown.

AutoLifter achieves this by iterating on a parameter t . In
each turn, AutoLifter assumes the size of the target program

is at most t and chooses a proper number of examples ac-

cording to the guarantee provided by Occam solvers. When

the size of the synthesized program is no larger than t , the
size of the smallest valid program must be no larger than

t , and thus this result can be safely returned. Otherwise, t
will be doubled, and a new turn will start. In this way, the

correctness of the synthesis result is guaranteed.

4 Approach for Divide-and-Conquer
In this section, we give the details on how AutoLifter synthe-
sizes divide-and-conquer programs. Given original program

p and two grammars Gf ,Gc , the task for AutoLifter is to

find a lifting scheme f from Gf and a combinator c from Gc
satisfying the following formula for all lists l1, l2.

(p (l1 ++ l2), f (l1 ++ l2)) = c ((p l1, f l1), (p l2, f l2))

Specially, f can be constant function null, representing that

no supplementary information is required. To ensure the

efficiency of the result, AutoLifter requires p and Gf ,Gc to

satisfy the two assumptions introduced in Section 3.

For convenience, we use ◦,△ and× to represent the compo-

sition and the product of functions, where ( f ◦д) B f (д x ),
( f △д) x B ( f x ,д x ), and ( f × д) (x1,x2) B ( f x1,д x2).

4.1 Subtasks
There are four types of subtasks generated during the syn-

thesis procedure of AutoLifter . Similar to Figure 3, we color

those variables quantified by quantifier ∀ as green and color

variables corresponding to the synthesis targets as blue.

• Lifting problem LP(p,h) for synthesizing f and c .

(p (l1 ++ l2), f (l1 ++ l2)) = c ((h l1, f l1), (h l2, f l2))

• Partial lifting problem PLP(p,h) for synthesizing f and c .

p (l1 ++ l2) = c ((h l1, f l1), (h l2, f l2))

• Subtask Sf (p,h) for synthesizing f .(
∧i ∈{1,2} (h li = h l ′i ) ∧ p (l1 ++ l2) , p (l ′

1
++ l ′

2
)
)

−→ ∨i ∈{1,2} ( f li , f l ′i )

• Subtask Sc (p,h, f ) for synthesizing c .

p (l1 ++ l2) = c ((h l1, f l1), (h l2, f l2))

Example 4.1. The types of the 5 tasks shown in Figure 3

are listed in the following table. To avoid confusion with

the generic original program p here, we refer to the original

program in our example as mss.

Task 1 LP(mss,mss) Task 2 PLP(mss,mss)
Task 3 Sf (mss,mss) Task 4 Sc (mss,mss,mps△mts)
Task 5 LP(mss,mss△(mps△mts))

Note that in this section, we focus on the tactic of divide-

and-conquer only. The concepts of these subtasks will be

generalized and redefined in Section 5.

4.2 Deductive Part
The deductive system of AutoLifter splits a lifting problem
LP(p,h) into several subtasks of type Sf and Sc via two de-

ductive rules, decomposition and decoupling.
Decomposition. Given lifting problem LP(p,h), the proce-
dure of decomposition is listed below.

1. Solve subtask PLP(p,h). Let ( f1, c1) be the result.
2. Return ( f1, c1△null) when f1 = null.
3. Solve subtask LP( f1,h△ f1). Let ( f2, c2) be the result.
4. Return

(
f1△ f2, (c1 ◦ (φl × φl ))△(c2 ◦ (φr × φr ))

)
.

φl and φr are two functions that reorganize the inputs to

match the types of c1 and c2. They are defined asφl (a, (b, c )) B
(a,b) and φr (a, (b, c )) B ((a,b), c ).

Example 4.2. When applying to LP(mss,mss), f1 and f2 can
bemps△mts and sum respectively. At this time, the structures

of the inputs of c , c1 and c2 are listed below.
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• (c)
((
mss, ((mps,mts), sum)

)
,
(
mss, ((mps,mts), sum)

))
• (c1)

(
(mss, (mps,mts)), (mss, (mps,mts))

)
• (c2)

((
(mss, (mps,mts)), sum

)
,
(
(mss, (mps,mts)), sum

))
It is easy to verify that the structure of the inputs of c , c1 ◦
(φl × φl ) and c2 ◦ (φr × φr ) are equal.

Theorem 4.3 (Correctness of Decomposition). Any result
found by rule decomposition is a valid solution for LP(p,h).

Due to the space limit, we omit the proofs to theorems,

which can be found in Appendix C.

Note that decomposition can still be applied to the sec-

ond subtask LP( f1,h△ f1). Therefore, a lifting problem can

be completely converted into partial lifting problems by re-

cursively applying rule decomposition.
For efficiency, AutoLifter considers only the first solution

to PLP(p,h) while applying decomposition. Such an imple-

mentation is incomplete. It is possible that the first synthe-

sized lifting scheme is invalid, and a correct solution can

never be found. However, as we shall show in Section 7, on

all tasks in our evaluation this greedy approach works well

without backtracking. Besides, we also provide an implemen-

tation of decomposition that ensures completeness, which

can be found in Appendix B.1.

Decoupling. Given partial lifting problem PLP(p,h), the
procedure of decoupling is listed below.

• Solve subtask Sf (p,h). Let f be the result.

• Solve subtask Sc (p,h, f ). Let c be the result.
• Take ( f , c ) as the synthesis result.

The following theorem shows the correctness of this rule.

Theorem 4.4 (Correctness of Decoupling). Any ( f , c ) found
by rule decoupling is a valid solution for PLP(p,h).

When the program space for c (i.e., grammar Gc ) is ex-

pressive enough to represent any possible combinator, rule

decoupling is also complete. Such a conclusion is proven

in Appendix C as Lemma C.11. But in practice, the expres-

siveness of Gc is usually limited. At this time, Sf (p,h) is
only a weak specification over f and decoupling becomes

incomplete. It is possible that there is no valid combinator

corresponding to f synthesized from Sf (p,h).
There are two important properties making decoupling

effective in practice. At first, all programs related to Sf (p,h),
including p,h and candidate programs in Gf , map a list to

a constant number of scalar values. Therefore, their input

spaces are far larger than the output spaces, i.e., they are

compressing. According to the definition, Sf (p,h) requires
f to output differently on inputs satisfying some condition

with respect to p and h. The small output space makes an

incorrect program hardly to satisfy Sf (p,h), since the smaller

the output space is, the more likely for a program to output

the same on two different inputs.

Second, in AutoLifter , the generalizability of the synthe-

sizer for Sf (p,h) is guaranteed by Occam solvers [Ji et al.

2021], and thus AutoLifter can find the user-wanted lifting

scheme f from Sf (p,h) in practice. More details on Occam
solvers can be found in Section 4.4.

We formalize the relationship between these two prop-

erties and the effectiveness of decoupling in Appendix C as

Theorem C.3. This theorem demonstrates that when both

two above properties hold and the semantics are modeled

as random, the probability for AutoLifter to synthesize an

unwanted lifting scheme from Sf is negligible.

The practical performance of AutoLifter matches the theo-

retical analysis. For all tasks in our evaluation, there is always

a valid combinator corresponding to the first solution found

by AutoLifter for Sf . We also provide an implementation of

decoupling that ensure completeness in Appendix B.1.

4.3 Inductive Part
AutoLifter solves subtasks of type Sf and Sc via inductive
synthesizers. The synthesis algorithms for both types are

comprised of a synthesizer and a verifier and are under

the framework of counter-example guided inductive synthe-
sis [Solar-Lezama et al. 2006]. In this subsection, we introduce

the synthesizers, and the verifiers will be left to Section 4.4.

We take PolyGen [Ji et al. 2021], a state-of-the-art synthe-

sizer based on input-output examples, as the synthesizer for

Sc . Because PolyGen is already effective enough for most

known tasks, we do not modify its synthesis algorithm.

We build the synthesizer for Sf based on observational
equivalence (denoted as Oe ) introduced in Section 3. We use

order <s to represent the enumeration order of Oe , where

f1 <s f2 represents that f1 is visited before f2 by Oe .

Because Oe is not effective enough for many known tasks,

we improve it via a special treatment for operator △, namely

observational covering (denoted as Oc ). We regard the lifting

scheme as an ordered list of lifting functions, which are also

programs inGf . To distinguish, we call the list representation

of a lifting scheme as a composed program, which is a list

f = [f1, . . . , fk ] of lifting programs f1 . . . fk ∈ Gf satisfying

fk <s · · · <s f1. A composed program [f1, . . . , fk ] can be

converted into a lifting scheme by concatenating f1, . . . , fk
via the product operator △, resulting in f1△ . . . △ fk .

Similar with Oe , Oc firstly sets up a goal for finding the

smallest composed program and then uses pruning strate-

gies to skip those programs that are impossible to be optimal.

In Om , the smallest is defined via a partial order over com-

posed programs, namely ≺c , where f = [f1, . . . , fk ] ≺c f ′ =

[f ′
1
, . . . , f ′k ′] if k is no larger than k ′ and list f is lexicograph-

ically smaller than list f ′ according to <s . The target of Oc
is to find a minimal composed program in the sense of ≺c .

Oc is based on the concept of observationally covered (ab-

breviated as covered) programs (Definition 4.5). Because a

minimum of ≺c must be uncovered, programs that are cov-

ered can be skipped. Lemma 4.6 describes a pruning strategy

based on this point.
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Algorithm 1: The pseudo code of synthesizer Oc .

Input: A set E of examples and parameter nc .
Output: Lifting scheme f ∗ satisfying all examples.

1 ∀size ≥ 1,minList[size]← [],workingList[size]← [];

2 Function CheckUnCovered(size, program):
3 if ∃f ′ ⊂ f , f ′ < minList then return false;
4 return ∀k ∈ [1, size],∀f ∈ minList[k],E |f ⊈ E |program;

5 Function NextComposedProgram(size):
6 if size = 1 then return [Oe .Next()] ;

7 if workingList[size].Empty() then return null;
8 return workingList[size].PopFront();
9 Function InsertNewPrograms(size, prog = [f1, . . . , fsize]):

10 minList[size].PushBack(prog);
11 for each [f ] ∈ minimalList[1] satisfying f <s fsize do
12 f ← [f1, . . . , fsize, f ];

13 workingList[size + 1].PushBack(f );
14 end
15 for turn← 1 . . . +∞ do
16 s ← (turn − 1) mod nc + 1;

17 f ← NextComposedProgram(s);

18 if f = null ∨ ¬CheckUnCovered(s, f ) then continue;
19 if E |f = E then return f1△ . . . △ fs (f = [f1, . . . , fs ]);

20 InsertNewPrograms(s, f );

21 end

Definition 4.5. f is said to be observationally covered on

example set E if ∃f ′ ≺c f , E |f ⊆ E |f ′ , where E |f represents

the set of examples satisfied by some program in f .

Lemma 4.6. Composed program f is uncovered on E ⇒

∀f ′ ⊆ f , f ′ is uncovered on E, where f1 ⊆ f2 represents that
all lifting functions in f1 are in f2 as well.

Algorithm 1 shows the pseudo-code of Oc . We maintain a

working list (workingList) that queues composed programs

to be enumerated and a list (minList) containing existing

uncovered programs. In each turn, we either obtain a new

composed program from Oe (line 6) or obtain a composed

program from the working list (lines 7-8). If this program is

uncovered (Line 18) and is not yet a solution (Line 19), it will

be used to construct new programs (Lines 11-13, 20).

There are two noticeable points in Algorithm 1. First, be-

cause verifying uncovered programs according to Definition

4.5 is time-consuming (Line 4), Oc firstly use Lemma 4.6, a

necessary condition for uncovered programs, to preclude

programs (Line 3). Second, parameter nc is used to control

the number of lifting functions.Oc ensures that each number

in [1,nc ] is considered with the same frequency (Line 16).

Such a limit ensures Oc to be an Occam solver, as will be

discussed in Section 4.4.

Theorem 4.7 (Properties of Observational Covering). Given
task Sf (p,h) and a set E of examples, let S be the set of all

valid composed programs. When S is non-empty, Oc always
terminates. Besides, the program f ∗ synthesized by Oc al-
ways satisfies (1) validity: f ∗ ∈ S , (2) minimality, ∀f ∈
S,¬
(
f ≺c f ∗

)
.

4.4 Verification
In this section, we introduce our verifier. We start with an

introduction to Occam solver [Ji et al. 2021].
Given a set of synthesis tasks T and constants α ≥ 1, 0 ≤

β < 1, solver S is an (α , β )-Occam solver on T if for any task
T ∈ T, any set E of examples and any correct program p∗,
the size of the program synthesized by S is always no larger

than c (size(p∗))α |E |β , where c is a large enough constant

and size(p) is the length of the binary representation of p.
PolyGen is an Occam solver and the following theorem

shows that Oc is also an Occam solver. Therefore, both

solvers for Sf and Sc in AutoLifter are Occam solvers.

Theorem 4.8. Oc (Algorithm 1) is a (1, 0)-Occam solver.

The correctness of an Occam solver is guaranteed in a

probabilistic way [Blumer et al. 1987]. When the number

of examples is polynomial to the size of the smallest valid

program, the probability for the generalization error of the

synthesis result to exceed a threshold is bounded.

Therefore, to obtain a probabilistic guarantee on the cor-

rectness, we only need to ensure the number of examples

is enough. The verifier of AutoLifter achieves it by iterating

with the number of examples ns and a threshold t . Given a

synthesis task T , a solver S, and a generator that indepen-

dently generates examples from a fixed distribution D, the
verifier executes in the following way:

1. Set t to 1, and set ns to a pre-defined parameter n0.
2. Invoke S using ns samples. Let p be the synthesis result.

3. Return p as the result if size(p) ≤ t .
4. Double ns and t , and go back to step 2.

The following theorem shows that this iterative algorithm

provides a probabilistic guarantee on the correctness and it

must terminate when S is an Occam solver.

Theorem 4.9 (Probabilistic Guarantee of the Verifier). For
any synthesis task T , any solver S available for task T , and
any distribution D for examples, if the iterative algorithm
terminates, the synthesized program p always satisfies the
following formula.

∀ϵ ∈ (2 ln 2/n0, 1) , Pr [errD (p) ≥ ϵ] ≤ 4 exp(−ϵn0)

where errD (p) represents the probability for p to violate an
example drawn from distribution D.
Moreover, the iterative algorithm always terminates when

S is an Occam solver.

5 Lifting Problem
In this section, we introduce the concept of lifting problem
and show how AutoLifter generalizes to other tactics in brief.
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5.1 Motivation
Let us see the application conditions of several other tactics.

Due to the space limit, we introduce these tactics in brief.

More details can be found in Appendix D.

• Al,1,Al,2,Al,3 represent three greedy algorithms for longest
segment problem (LSP) [Zantema 1992], which is described

by a predicate b on lists. Given list l , LSP(b) queries the
length of the longest segment in l satisfying b. Application
conditions for Al,1,Al,2,Al,3 are Formula 2, Formula 2

and 3, and Formula 4 respectively.

(b (l ++ [a]), f (l ++ [a])) = c ((b l , f l ),a) (2)

(b (tail l ), f (tail l )) = c ′ ((b l , f l ),a) (3)

(p (l1 ++ [a] ++ l2), f (l1 ++ [a] ++ l2)) =

c ((p l1, f l1),a, (p l2, f l2)) (4)

where p represents a program for task LSP(b).
• Ar is lazy propagation, a classical algorithm, for range
update and range query (RANGE) [Lau and Ritossa 2021].

Given list x , query function h, update function u, and a list
of operations oi , the task is to process operations in order.

– Update o = (U,a, l , r ): set xi tou (a,xi ) for each i ∈ [l , r ].
– Query o = (Q, l , r ): calculate and output h [xl , . . . ,xr ].
The following shows the application condition of Ar .

(h (map ua l ), f (map ua l )) = c1 ((h l , f l ),a)

(h (l1 ++ l2), f (l1 ++ l2)) = c2 ((h l1, f l1), (h l2, f l2))

where ua is the abbreviation of λw .u (a,w ).
• Am represents an algorithm using dynamic programming

for maximum weightsum problem (MMP) [Sasano et al.

2000], which is described by a predicateb. Given aweighted
list, the task of MMP(b) is to mark a sublist satisfying b
and maximize the weight-sum of marked elements. The

application condition ofAm has the same form as Formula

2.

The application conditions of all the above tactics and the

tactic for divide-and-conquer are similar in the form.

• On the left, a known program p (or b) and an unknown

lifting scheme f is applied to the input.

• On the right, p (or b) and f are applied to lists in the input,

and the results are merged via an unknown combiantor c .

The generalized lifting problem abstracts this from and

thus includes the synthesis tasks of these mentioned tactics.

5.2 Problem Definition
We use functors to define the lifting problem. A functor

(denoted by F) maps types to types, functions to functions,

and keeps both identity and composition.

FidA = idFA F( f ◦ д) = Ff ◦ Fд

In this paper, we only consider functors constructed by iden-

tity functor I, constant functors !A for any type A, and bi-

functor ×. Their definitions are shown below.

(!A)B = A (!A) f = idA IA = A If = f

(F1 × F2)A = (F1A) × (F2A) (F1 × F2) f = (F1 f ) × (F2 f )

We further define a specific class of functions, constructors,
which capture the different ways of constructing the input to

p and f . Given a type A, a constructorm for A is a function

with an attached functor Fm such that the signature ofm is

FmA→ A.
With the above notations, we define the lifting problem.

Definition 5.1 (Lifting Problem). Let p be a program from

A to B andM be a set of constructors {m1, . . . ,mn }. Lifting

problem LP(M,p) is to find a lifting scheme f and n combi-

nators c1, . . . , cn satisfying the formula.

∀mi ∈ M, (p△ f ) ◦mi = ci ◦ Fmi (p△ f )

Example 5.2. The synthesis tasks corresponding to divide-

and-conquer and tactics discussed in Section 5.1 can be re-

garded as the following lifting problems.

• (Divide-and-Conquer) LP({λ(l1, l2).l1 ++ l2},p).
• (Al,1,Am ) LP({λ(l ,a).l ++ [a]},b).
• (Al,2) LP({λ(l ,a).l ++ [a], λ(l ,a), (tail l )},b).
• (Al,3) LP({λ(l1,a, l2).l1 ++ [a] ++ l2},p).
• (Ar ) LP({λ(l ,a).map ua l , λ(l1, l2).l1 ++ l2},h).

5.3 Generalization of AutoLifter
Now, we show how to generalize AutoLifter to lifting prob-

lems in brief. More details can be found in Appendix A.

SubtasksWe first redefine the subtasks in Section 4.1.

• Lifting problem LP(M,p,h) for synthesizing f and ci for
each constructorM .

∀mi ∈ M, (p△ f ) ◦mi = ci ◦ Fmi (p△ f )

• Partial lifting problem PLP(M,p,h) for synthesizing f and

ci for each constructor inM .

∀mi ∈ M,p ◦mi = ci ◦ Fmi (p△ f )

and its special case SPLP(m,p,h) whenM = {m}.
• Subtask Sf (m,p,h) for f and subtask Sc (m,p,h, f ) for c .(

Fmh i = Fmh i ′ ∧ p (m i ) , p (m i ′)
)
→ Fm f i , Fm f i ′

p ◦m = c ◦ Fm (p△ f )

Deductive Part. In Section 4, decomposition splits the prod-

uct on the left of the specification, and decoupling decouples

the functional composition on the right. The generalized

subtasks retain these two substructures. Therefore, rule de-
composition and decoupling can be naturally generalized to

convert LP(M,p,h) into partial lifting problems, and convert

SPLP(m,p,h) into Sf and Sc , respectively.
Similar to the divide-and-conquer version, the effective-

ness of decoupling in AutoLifter is guaranteed when p and
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available lifting schemes all map their input space to a far

smaller output space, e.g., from a recursive data structure to

a tuple of scalar values.

There remains a gap between PLP and SPLP. A PLP task

with n constructors can be split into n SPLP tasks, each

dealing with one constructor. Their results can be merged

by taking the joint of all used lifting functions and adjusting

the inputs of combinators according to the type.

Inductive Part. PolyGen can be applied to Sc because input-
output examples for c is available, and observational covering
can be applied to Sf as it is still common for f to include

multiple lifting functions under the generated setting.

Verification. The iterative verification requires (1) the exis-

tence of a generator for examples, (2) the solvers to be Occam

solvers. Both of them hold under the generalized setting.

6 Implementation
Our current implementation requires that the original pro-

gram and available lifting schemes all map a list to a tuple of

scalar values. AutoLifter can be applied to other data struc-

tures if corresponding operators and grammars are provided.

Grammars. We take the grammar used byDeepCoder [Balog
et al. 2017] as Gf . This grammar contains 17 list operating

functions, including commonly used higher-order functions

such asmap and filter , and operators that perform branching

and looping internally, such as sort and count.
We take the grammar for conditional integer arithmetic

in SyGuS-Comp [Alur et al. 2019] as Gc . This grammar con-

tains basic arithmetic operators such as +,−,×, div, Boolean
operators, and branch operator if-then-else. Gc can express

complex programs via nested if-then-else operators.
The complete grammars can be found in Appendix B.2.

Parameters for Verifiers. Distribution D defines how the

examples are sampled. To avoid arithmetic overflow while

using ×, we let D focus on short lists and small integers:

• For type List,D draws an integer from [0, 10] as its length,
and recursively samples the contents.

• For type Int, D draws an integer from [−5, 5].
• For type Bool, D draws a value from {true, false}.

Parameter n0 determines the initial number of examples.

Guided by Theorem 4.9, we set n0 to 10
4
. At this time, the

probability for the generation error of the synthesized pro-

gram to be more than 0.001 is at most 1.82 × 10−4 .
Other Parameters. While implementing Oc , we set nc to
4 because the product of four lifting functions is already

enough for most known lifting problems.

7 Evaluation
To evaluate AutoLifter , we report two experiments to answer

the following research questions:

• RQ1: How effective does AutoLifter synthesize divide-and-
conquer programs?

• RQ2: How does AutoLifter generalizes to other tactics?

7.1 Baseline Solvers
First, we compare AutoLifter with a SOTA synthesizer for

divide-and-conquer, Parsynt [Farzan and Nicolet 2017, 2021].

Parsynt is a white-box solver, requiring the original program
to be single-pass. It uses pre-defined rules to transform the

loop body, extract the lifting functions directly, and then

synthesize the combinator via inductive synthesizers.

There are two versions of Parsynt available, where dif-

ferent transformation systems are used. We denote them as

Parsynt17 [Farzan and Nicolet 2017] and Parsynt21 [Farzan
and Nicolet 2021], and consider both of them in evaluation.

Second, we compareAutoLifter with twoweakened solvers.

• Enum is an enumerative solver. Given task LP(M,p), Enum
enumerates candidate solution ( f , {ci }) in the increasing

order of the total size, until a correct solution is found.

• DEnum is weakened from AutoLifter by replacing observa-
tional covering with observational equivalence.

First, comparing with Enum and DEnum forms ablation stud-

ies on the deductive system and observational covering re-

spectively. Second, as shown in Section 8, several existing

synthesizers degenerates to DEnum on lifting problems.

7.2 Dataset
Our evaluation is conducted on two datasets DD and DL .

Dataset DD . The first dataset DD is based on the datasets

used by previous work on program calculation and algorithm

synthesis [Bird 1989; Farzan and Nicolet 2017, 2021]
2
. DD

includes all tasks (36 in total) that target to synthesize divide-

and-conquer-style parallel program from these benchmarks.

As a result,DD contains all tasks used by Bird [1989]; Farzan

and Nicolet [2017] and 12 out of 22 tasks used by Farzan

and Nicolet [2021]. The other 10 tasks involve a class of

divide-and-conquer different from the tactic proposed by

Cole [1995], and thus are out of the scope of AutoLifter .
DatasetDL . The second datasetDL consists of 21 tasks that

are related to tactics Al,1,Al,2,Al,3 for problem LSP and

tactic Ar for problem RANGE. These tactics and problems

have been introduced in Section 5.1.

For LSP,DL contains all samples used by Zantema [1992],

including 3, 1, 4 tasks for Al,1,Al,2,Al,3 respectively.

For RANGE, because no previous work on lazy propaga-
tion provides a dataset, we searched Codeforces, an online

platform for competitive programming, using "segment tree"

and "lazy propagation", and obtained 13 tasks in DL .

There is another tactic Am mentioned in Section 5.1. We

do not consider it in DL because the efficiency of its result

is related to the range of the lifting functions and thus is not

2
The original dataset of Parsynt21 contains two bugs in task longest_1(0*)2
and longest_odd_(0+1) that were introduced while manually rewriting the

program into a single-pass function with fold. These bugs were confirmed

by the original authors, and we fixed them in our evaluation. This also

demonstrates that writing a program as a single-pass function is difficult

and error-prone.
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supported by our current implementation. AutoLifter can be

extended to this tactic by skipping those results where the

range is large in Oc .

Guarantees. For all 5 tactics involved in DD and DL , the

efficiency of the resulting program is guaranteed if the com-

binator is constant-time. As discussed in Section 3,AutoLifter
guarantees this point by two assumptions on the grammars.

7.3 RQ1: Comparison on Divide-and-Conquer
Procedure. We compare AutoLifter with baseline solvers on

tasks in DD with a time limit of 300 seconds and a memory

limit of 8 GB. There are three noticeable points in the setting.

• The default grammars discussed in Section 6 are not ex-

pressive enough for 8 tasks inDD , where operators such as

regex matching on an integer list are required. Therefore,

we set up an enhanced setting where missing operators

are manually provided to the grammars. Details on these

operators can be found in Appendix E.1.

• To invoke Parsynt, we provide single-pass implementa-

tions for tasks inDD
3
. At this time, some lifting functions

have already been involved, as discussed in Section 3.1.

• We failed in installing Parsynt17 because of some issues

on the dependencies. The authors of Parsynt17 confirmed

but have not solved this problem. So we compare Auto-
Lifter with Parsynt17 on its original dataset D−D using the

evaluation results reported by Farzan and Nicolet [2017].

Results. The results of this experiment are summarized as

the upper part of Table 1. We manually verify all synthesis

results and find that AutoLifter always returns a completely
correct solution on those solved tasks.

On efficiency, AutoLifter solves no fewer tasks than all

baselines under all settings and usually solves much more.

Note that though about 60% and 40% lifting functions are

directly provided to Parsynt17 and Parsynt21 respectively,
AutoLifter still solves a competitive number of tasks and

achieves a much faster speed on those jointly solved tasks.

One interesting result is that AutoLifter uses fewer lift-
ing functions than both versions of Parsynt. One reason is

that the syntax may mislead Parsynt to some unnecessarily

complex solutions. We take task line_sight (abbreviated as

ls) as an example, which checks whether the last element is

the maximum in a list. (ls △ max) l = fold ⊕ (false,−∞) l
is a single-pass implementation for ls with lifting function

max, where (ls1,max1) ⊕ a B (a ≥ max1,max(a,max1)).
Because there is a comparison between max1 and a, the
last visited value, Parsynt takes last l as a lifting function.

However, such a lifting function is unnecessary, because

ls (l1 ++ l2) = (ls l2) ∧ (max l1 ≤ max l2). AutoLifter can find

this solution as it synthesizes from the semantics.

Under the enhanced setting, the performance of AutoLifter
is improved. Such a result shows that AutoLifter can be fur-

ther improved if missing operators can be automatically

3
For tasks taken from Parsynt, we use the program in its original evaluation

inferred. To achieve this, one possible way is to extract use-

ful operators from the original program. This will be future

work. The only failed task is longest_odd_(0+1) constructed
by Farzan and Nicolet [2021], where AutoLifter successfully
finds a correct lifting scheme but PolyGen fails.

7.4 RQ2: Comparison on Other Tactics
Procedure. We compare AutoLifter with Enum,DEnum on

tasks in DL with a time limit of 300 second and a memory

limit of 8 GB. Similar with Section 7.3, we manually provide

missing operators for one task under the enhanced setting.

Result. The results of this experiment are summarized as the

lower part of Table 1, which demonstrates the effectiveness

of AutoLifter . Under the enhanced setting, AutoLifter solves
all tasks with an average time cost of 7.52 seconds.

7.5 Case Study
We make a case study on two tasks in our dataset. Due to

the space limit, we only list the results of the case study here.

More details can be found in Appendix E.2.

• The first shows the advantage of black-box synthesis. This

task is for the maximum but requires lifting functions that

calculate the minimum. Parsynt fails on this task because

this solution is counter-intuitive on syntax and is out of the

scope of the transformation rules in Parsynt. In contrast,

AutoLifter successfully solves it by directly synthesizing

from the semantics.

• The second shows that AutoLifter is able to solve tasks dif-
ficult for human programmers. This task was used by the

2020-2021 Winter Petrozavodsk Camp, which is a world-

wide training camp representing the highest level of com-

petitive programming. Only 26 out of 243 teams success-

fully solved this task in 5 hours, while AutoLifter solves it
using only 14.33 seconds.

8 Related Work
AlgorithmSynthesis. Many existing approaches have been

proposed to automatically synthesize divide-and-conquer-

style parallel programs [Ahmad and Cheung 2018; Farzan

and Nicolet 2017; Fedyukovich et al. 2017; Morita et al. 2007;

Radoi et al. 2014; Raychev et al. 2015; Smith and Albargh-

outhi 2016]. Some approaches [Farzan and Nicolet 2017;

Fedyukovich et al. 2017; Morita et al. 2007; Raychev et al.

2015] support to find lifting functions. However, all of them

require the original program to be single-pass. To our knowl-

edge, AutoLifter is the first that synthesizes the lifting func-

tions without requiring a single-pass implementation.

There are two solvers for divide-and-conquer that go be-

yond the algorithmic tactic used in this paper. Farzan and

Nicolet [2019] and Farzan and Nicolet [2021] support pro-

grams with nested loops, and the latter also support a more

general class of divide operators other than dividing at the
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Table 1. The results of the evaluation.

Solver Dataset #Tasks

#Solved Average Time Cost (s)
1

Average #Supplementaries
1,3

Baseline AutoLifter Baseline AutoLifter Baseline AutoLifter

Exp1 (Section 7.3)
2

AutoLifter
DD 36

28 (35) 7.11 (8.90) 2.04 (2.31)

Enum 5 (6)

28 (35)
7.41 (9.89) 0.05 (0.40) 0.20 (0.33) 0.20 (0.33)

DEnum 14 (15) 9.64 (9.30) 3.74 (3.63) 1.14 (1.13) 1.14 (1.13)

Parsynt17 D−D 20 19 19 (20) 15.59 (19.22) 3.85 (3.76) 0.94+0.61 (0.89+0.63) 1.5 (1.47)
Parsynt21 DD 36 24 28 (35) 5.62 (6.74) 1.19 (5.46) 1.21+1.58 (1.25+1.79) 1.79 (2.21)

Exp2 (Section 7.4)
2

AutoLifter
DL 21

20 (21) 7.80 (7.52) 2.25 (2.29)

Enum 4 (4)

20 (21)
67.92 (67.92) 0.20 (0.20) 1.00 (1.00) 1.00 (1.00)

DEnum 15 (16) 11.64 (12.65) 7.00 (6.68) 1.53 (1.63) 1.53 (1.63)

1
The average includes only the results on the tasks solved by both solvers.

2
For results in the form of a (b), a and b represents results under the default setting and the enhanced setting respectively.

3
The number of lifting functions used by ParSynt is listed in the form of c + d , where c and d represents the number of

manually provided lifting functions and the number of synthesized lifting functions respectively.

middle. They are based on single-pass programs and thus

their contributions are orthogonal to ours.

There are also approaches for other algorithms. Lin et al.

[2019] target at dynamic programming and Acar et al. [2005]

incrementalizes an existing program. Both of them also re-

quire the syntax of the original program. AutoLifter are not
designed for these algorithms as the application conditions

in their tactics are not in the form of lifting problems.

Type- and Resource-Aware Synthesis. There is another
line of work for synthesizing efficient programs, namely

type- and resource-aware synthesis [Hu et al. 2021; Knoth

et al. 2019]. These approaches use a type system to represent

a resource bound, such as the time complexity, and use type-
driven program synthesis [Polikarpova et al. 2016] to find

programs satisfying the given bound.

Compared with algorithm synthesis, these approaches can

achieve more refined guarantees via type systems. However,

these approaches need to synthesize the whole program from

the start, where scalability becomes an issue. As far as we

are aware, so far none of these approaches could scale up to

synthesizing the algorithms our approach does.

Program Synthesis. Program synthesis is an active field

and many synthesizers have been proposed. Here we dis-

cuss the most-related approaches. AutoLifter is related to

DryadSynth [Huang et al. 2020], which also combines deduc-

tive methods and inductive methods. However, the deductive

rules in DryadSynth are based on Boolean/arithmetic opera-

tors, and thus are useless for lifting problems, where these

operators are not explicitly used in the specification. More-

over, because DraySynth uses observational equivalence as
the inductive solver, it will work the same as our baseline

DEnum if we replace its deductive system with AutoLifter’s.

AutoLifter is also related to Relish [Wang et al. 2018], which

targets to specifications with multiple unknown functions.

Relish builds finite tree-automates (FTA) for variables and syn-
thesizes by merging them together. However, as the time cost

of constructing an FTA is similar to observational equivalence,
Relish cannot be much faster than our baseline DCEnum.

There are also solvers for synthesizing list-operating pro-

grams, including DeepCoder [Balog et al. 2017], Myth [Os-

era and Zdancewic 2015], λ2 [Feser et al. 2015] and Re-
fazer [Rolim et al. 2017]. All of these solvers are based on

input-output examples, which are unavailable in task Sf .

9 Conclusion
In this paper, motivated by the difficulty of implementing

single-pass programs, we study the problem of black-box

algorithm synthesis for divide-and-conquer. Inspired by the

previous work on program calculus, we use algorithmic tac-

tics to convert the task of algorithm synthesis to the task of

solving the corresponding application condition.

To efficiently solve the application condition of divide-

and-conquer, we propose a novel synthesizer AutoLifter . Au-
toLifter first uses two deductive rules, decomposition and

decoupling, to reduce the scale of the result, and then uses

inductive synthesizers, PolyGen and observational covering,
to solve the subtasks generated by the deductive rules. Auto-
Lifter uses grammars and an iterative verifier to guarantee

the efficiency and the correctness of the synthesis result.

We also generalize AutoLifter to other algorithms where

the application condition follows the same structure with

divide-and-conquer. We define the lifting problem to capture

the commonality of these algorithms and generalize Auto-
Lifter to the general lifting problems. In this way, AutoLifter
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can be applied to all those algorithms where the application

condition is an instance of the lifting problem.

Our evaluation demonstrates the effectiveness of Auto-
Lifter on lifting problems and shows that though AutoLifter
does not access the syntax of the original program, it still

achieves competitive performance compared with state-of-

the-art white-box approaches for divide-and-conquer.
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A Appendix: Generalized Approach
In this section, we elaborate the detail on generalizing Auto-
Lifter to the lifting problems, defined in Section 5.2.

Similar to the main text, the proofs of the theorems in this

section can be found in Appendix C.

A.1 Subtasks
The generalized subtasks has been introduced in Section 5.3.

They are defined in the following way.

• Lifting problem LP(M = {m1, . . . ,mn },p,h).

∀mi ∈ M, (p△ f ) ◦mi = ci ◦ Fmi (p△ f )

• Partial lifting problem PLP(M = {m1, . . . ,mn },p,h),

∀mi ∈ M,p ◦mi = ci ◦ Fmi (p△ f )

and its special case SPLP(m,p,h) whenM = {m}.
• Subtask Sf (m,p,h) and Sc (m,p,h, f ).(

Fmh i = Fmh i ′ ∧ p (m i ) , p (m i ′)
)
→ Fm f i , Fm f i ′

p ◦m = c ◦ Fm (p△ f )

A.2 Deductive Part
Decomposition. This rule is the generalization of rule de-
composition discussed in Section 4. Given lifting problem

LP(M = {m1, . . . ,mn },p,h), its procedure is listed below.

1. Solve subtask PLP(M,p,h) and get ( f , c1, . . . , cn ).
2. Return ( f , c1△null, . . . , cn△null) when f = null.
3. Solve subtask LP(M, f ,h△ f ) and get ( f ′, c ′

1
, . . . , c ′n ).

4. Return ( f △ f ′, c∗
1
, . . . , c∗n ). c

∗
i is defined as the following.

c∗i B
(
ci ◦ Fmiφl

)
△
(
c ′i ◦ Fmiφr

)
The definitions of φl and φr remains unchanged, where

φl (a, (b, c )) B (a,b) and φr (a, (b, c )) B ((a,b), c ).

Theorem A.1 (Correctness of Decomposition). Any result
found by decomposition is a valid solution for LP(M,p,h).

Decomposition*. This is a supplementary rule for convert-

ing a general PLP task into the special case SPLP. Given
a partial lifting problem SPLP(M = {m1, . . . ,mn },p,h), the
procedure of decomposition* is listed below.

1. ∀i ∈ [1,n], solve subtask SPLP(mi ,p,h) and get ( fi , ci ).
2. Return ( f1△ . . . △ fn , c1 ◦ Fm1

φ1, . . . , cn ◦ Fmnφn ).

Function φi reorganizes the inputs for c1, . . . , cn , which is

defined as φi (a, (b1, . . . ,bn )) B (a,bi ).

Theorem A.2 (Correctness of Decomposition*). Any result
found by decomposition* is a valid solution for PLP(M,p,h).

Decoupling. Given partial lifting problem SPLP(m,p,h), the
procedure of decoupling is listed below.

• Solve subtask Sf (m,p,h). Let f be the result.

• Solve subtask Sc (m,p,h, f ). Let c be the result.
• Take ( f , c ) as the synthesis result.

TheoremA.3 (Correctness of Decoupling). Any ( f , c ) found
by rule decoupling is a valid solution for SPLP(m,p,h).

Besides, Theorem C.3, which demonstrates the effective-

ness of decoupling, can also be generalized to lifting problems.

Theorem A.4. For any task Sf (m,p,h), a grammar Gf and
a target program f ∗ ∈ Gf , the probability for a (α , 0)-Occam
solver to synthesize a program f different from f ∗ is negligible
if (1) all related programs (p,h and programs in Gf ) returns
a constant number of scalar values; (2) all used arithmetic
operators are linear; (3) the semantics of p,h and programs in
Gf /{ f

∗} are independently drawn from all functions mapping
from the corresponding input space to the corresponding output
space.

A.3 Inductive Part
In the generalized version, Sc and Sf are still solved by

PolyGen and observational covering respectively.

For task Sc (m,p,h, f ), the following shows its specifica-

tion in a point-free way, where I represents the input space.

∀i ∈ I,p (m i ) = c (Fm (p△ f ) i )

Clearly, for each input i , (Fm (p△ f ) i ) → (p (m i )) forms

an input-output example for c . Therefore, the generalized
version of Sc is still in the scope of PolyGen.

For task Sf (m,p,h), Lemma 4.6 (restated as Lemma A.5)

still holds. Therefore, Oc is still applicable with all its prop-

erties preserved, as shown in Theorem A.6 and A.7

LemmaA.5. For any task Sf (m,p,h) and a set E of examples,
composed program f is observationally uncovered on E ⇒

∀f ′ ⊆ f , f ′ is observationally uncovered on E.

TheoremA.6. Given task Sf (m,p,h) and a set E of examples,
let S be the set of all valid composed programs. When S is
non-empty, Oc always terminates. Besides, the program f ∗

synthesized by Oc always satisfies (1) validity: f ∗ ∈ S , (2)
minimality, ∀f ∈ S,¬

(
f ≺c f ∗

)
.

TheoremA.7. SynthesizerOc (Algorithm 1) is a (1, 0)-Occam
solver for Sf .

B Appendix: Implementation
B.1 An Implementation of AutoLifter that Ensures

Completeness
In this section, we introduce an implementation of Auto-
Lifter that ensures completeness for lifting problems. Given

task LP(M,p,h), the incomplete version of AutoLifter is com-

prised of four parts.

1. LP(M,p,h) is decomposed into a series of PLP tasks by

applying rule decomposition recursively.

2. Each PLP task is further decomposed into |M | SPLP tasks

by applying rule decomposition*.
3. For each task SPLP(m,p,h), Om is invoked to synthesize

a lifting scheme f from Sf (m,p,h).
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4. Given lifting scheme f , an external solver, which is Poly-
Gen in the incomplete implementation, is invoked to syn-

thesize a combinator c form Sc (m,p,h, f ).
To make AutoLifter complete, we should not miss any

way to decompose LP(M,p,h) into PLP tasks. Note that in

decomposition, subtask LP(M, f ,h△ f ) is related to f , which
is synthesized from Sf in step 3. Therefore, we should not

miss any solution to subtask Sf . To achieve this goal, a back-
tracking method is necessary to switch between different

solutions to Sf and also different ways of the decomposi-

tion. Because Oc guarantees only the terminality for the first

solution, but cannot tell whether all valid solutions have

been found, the main challenge here is to determine when

to switch to another search branch.

Algorithm 2 shows a complete version ofAutoLifter , which
solves the above challenge by iterating with a threshold

timeout (Lines 35-40). In each turn, Algorithm 2 enumerates

on solutions that can be found within timeout seconds.
Function SPLPSolver solves task SPLP(m,p,h) via rule

decoupling. It returns all possible lifting schemes and the cor-

responding combinators that can be found within timeout
seconds (Lines 1-10). Note that the choice of the combinator

c does not affect the synthesis procedure ofAutoLifter . There-
fore, recording the first valid c for each possible f is enough.

SPLPSolver firstly invokes SFSolver to find all solutions to
Sf (m,p,h) with the time limit timeout (Line 3). SPLPSolver
can be implemented as a basic enumerative solver that enu-

merates programs inGf in order and returns those solutions

found before timing out. For each found solution f , the ex-
ternal solver for Sf is invoked to solve Sc (m,p,h, f ) using
the remaining time (Line 4).

Function PLPSolver solves task PLP(M,p,h) via rule de-
composition*. It firstly solves each corresponding single par-

tial lifting problem separately under the timeout (Line 12)

and then returns those combinations of which the total time

cost does not exceed timeout (Lines 14-22).
Function LPSolver solves task LP(M,p,h) via rule decom-

position (Lines 23-34). First, it invokes PLPSolver to find

solutions to the corresponding partial lifting problem with

the timeout of timeout seconds (Lines 24). Then, it tries each
solution recursively until a valid solution is found (Lines

28-32) or all solutions have been enumerated (Line 34).

Theorem B.1 shows the completeness of Algorithm 2.

TheoremB.1. For any lifting problem LP(M,p,h) that has at
least one solution, Algorithm 2must terminate with a correct so-
lution if SCSolver is complete, i.e., for any task Sc (m,p,h, f )
that has at least one correct solution, SCSolver can always
find a correct solution within finite time.

The proof of this theorem is left to Appendix C.

B.2 Grammars
In this subsection, we supply the details to the default gram-

mars Gf and Gc used in our implementation.

Algorithm 2: An implementation of AutoLifter that en-
sures completeness.

Input: A lifting problem LP(M = {m1, . . . ,mn },p,h)
Output: A valid solution ( f , c1, . . . , cn ).

1 Function SPLPSolver(m,p,h, timeout):
2 res← [];

3 for (costf , f ) ∈ SFSolver(m,p,h, timeout) do
4 solution ← SCSolver(m,p,h, f , timeout − costf );
5 if solution , null then
6 (costc , c ) ← solution;
7 res.Append((costf + costc , ( f , c )))
8 end
9 end

10 return res;
11 Function PLPSolver(M,p,h, timeout):
12 ∀i ∈ [1,n], solutionsi ← SPLPSolver(mi ,p,h, timeout);
13 res← [];

14 for solution1 ∈ solutions1, . . . , solutionn ∈ solutionsn do
15 ∀i ∈ [1,n], (costi , ( fi , ci )) ← solutioni ;
16 total_cost←

∑n
i=1 costi ;

17 if total_cost ≤ cost then
18 f ∗ ← f1△ . . . △ fn ; ∀i ∈ [1,n], c

∗
i ← ci ◦ φi ;

19 res.Append((total_cost, ( f ∗
1
, c∗
1
, . . . , c∗n )));

20 end
21 end
22 return res;
23 Function LPSolver(M,p,h, timeout):
24 solutions← PLPSolver(M, p, h, timeout);
25 for (cost, ( f , c1, . . . , cn )) ∈ solutions do
26 if f is null then return ( f , c1, . . . , cn );

27 solution← LPSolver(M, f ,h△ f , timeout − cost);
28 if solution , null then
29 ( f ′, c ′

1
, . . . , c ′n ) ← solution;

30 ∀i ∈ [1,n], c∗i ←
(
ci ◦ (φl ×φl )

)
△
(
c ′i ◦ (φr ×φr )

)
;

31 return ( f △ f ′, c∗
1
, . . . , c∗n );

32 end
33 end
34 return null;
35 timeout← 1;

36 while true do
37 timeout← timeout × 2;
38 solution ← LPSolver(M,p,h, timeout);
39 if solution , null then return solution;
40 end

Figure 4 shows the content of grammarGf . Note that some

operators in Gf are partial. For example, Head is defined

only for non-empty lists. For convenience, we complete these

operators with a dummy output ⊥ and let the output of any

operator on ⊥ also be ⊥.

Figure 5 shows the content of grammar Gc . Because the

output of a lifting scheme can be the dummy value ⊥, we



Black-Box Algorithm Synthesis Conference’17, July 2017, Washington, DC, USA

Start Symbol S → NZ | S△S
Integer Expr NZ → IntConst | NZ ⊕ NZ | sum NL | len NL

| head NL | last NL | max NL | min NL
| access NZ NL | count FB NL | neg NZ

List Expr NL → Input list | take NZ NL | drop NZ NL
| map FZ NL | filter FB NL | zip ⊕ NL NL
| scanl ⊕ NL | scanr ⊕ NL | rev NL | sort NL

Binary Operator ⊕ → + | − | × | min | max
Integer Function FZ → (+ IntConst) | (− IntConst) | neg
Boolean Function VB → (< 0) | (> 0) | odd | even

Figure 4. Grammar Gf used for solving task Sf .

Integer Expr NS → IntConst | Inputs

| NZ ⊕ NZ | ⊥
| ite NB NZ NZ

Bool Expr NB → Inputs | ¬NB
| NB ∨ NB | NB ∧ NB
| NZ = NZ | NZ ≤ NZ

Binary Operator ⊕ → + | − | × | div

Figure 5. Grammar Gc used for solving task Sc .

also extend the semantics in Gc to support ⊥ by setting the

output of any operator on ⊥ to ⊥.

Gf and Gc satisfy the two assumptions discussed at the

beginning of Section 4. First, all operators on Int and Bool
in Gf (Gc ) are constant time. Second, for any program f in

Gf , the output of f is a tuple of integers with a fixed size.

C Appendix: Proofs
In this section, we complete the proofs of the theorems in

our paper.

C.1 Proofs for Section 4
Theorem C.1 (Theorem 4.3). Any result found by rule de-
composition is a valid solution for LP(p,h).

Proof. This theorem is a special case of Theorem A.1. □

Theorem C.2 (Theorem 4.4). Any ( f , c ) found by rule de-
coupling is a valid solution for PLP(p,h).

Proof. This theorem is a special case of Theorem A.3. □

Theorem C.3. For any task Sf (p,h), a grammar Gf and a
target program f ∗ ∈ Gf , the probability for a (α , 0)-Occam
solver to synthesize a program f different from f ∗ is negligible
if (1) all related programs (p, f and programs in Gf ) returns
a constant number of scalar values; (2) all used arithmetic
operators are linear; (3) the semantics of p,h and programs in
Gf /{ f

∗} are independently drawn from all functions mapping
from the corresponding input space to the corresponding output
space.

Proof. This theorem is a special case of Theorem A.4. □

LemmaC.4 (Lemma 4.6). Composed program f is uncovered
on E ⇒ ∀f ′ ⊆ f , f ′ is uncovered on E, where f1 ⊆ f2 if all
lifting functions in f1 are in f2.

Proof. This lemma is a special case of Lemma A.5. □

Theorem C.5 (Theorem 4.7). Given task Sf (p,h) and a set
E of examples, let S be the set of all valid composed programs.
When S is non-empty, Oc always terminates. Besides, the
program f ∗ synthesized by Oc always satisfies (1) validity:
f ∗ ∈ S , (2)minimality, ∀f ∈ S,¬

(
f ≺c f ∗

)
.

Proof. This theorem is a special case of Theorem A.6. □

Theorem C.6 (Theorem 4.8). Oc (Algorithm 1) is a (1, 0)-
Occam solver.

Proof. This theorem is a special case of Theorem A.7. □

Theorem C.7 (Theorem 4.9). For any synthesis task T , any
solver S available for task T , and any distribution D for ex-
amples, if the iterative algorithm terminates, the synthesized
program p always satisfies the following formula.

∀ϵ ∈ (2 ln 2/n0, 1) , Pr [errD (p) ≥ ϵ] ≤ 4 exp(−ϵn0)

where errD (p) represents the probability for p to violate an
example drawn from distribution D.
Moreover, the iterative algorithm always terminates when

S is an Occam solver.

Proof. We start with the probability bound. Let E(j ) be the
random event that given j · n0 random examples, solver S

returns a program of which the error rate is at least ϵ and the
size is at most j. By the process of the iterative algorithms,

we have the following inequality.

Pr[errD,φ (p) ≥ ϵ] ≤
∞∑
t=0

Pr[E(2t )] ≤
∞∑
j=1

Pr[E(j )]

When E(j ) happens, there must a program satisfying that

(1) its size is at most j, (2) its generalization error is at least

ϵ , and (3) it satisfies all n = j · n0 random examples. Because

size(p) is defined as the length of the binary representation of
program p, there are at most 2

j
programs satisfying the first

condition. We denote these programs as p1, . . . ,pm where

m ≤ 2
j
. Then, we have the following inequalities.
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Pr[E(j )]

≤ Pr

i1, ...,in∼D

[
∃k ∈ [1,m], errD,φ (pk ) ≥ ϵ∧

pk satisfies i1, . . . , in
]

≤

m∑
k=1

Pr

i1, ...,in∼D

[
errD,φ (pk ) ≥ ϵ ∧ pk satisfies i1, . . . , in

]

≤

m∑
k=1

(1 − ϵ )n ≤ 2
j
exp(−ϵ · j · n0) ≤ exp(ln 2 − ϵn0)

j

Therefore, the generation error can be bounded.

Pr[errD,φ (p) ≥ ϵ] ≤
∞∑
j=1

Pr[E(j )]

≤

∞∑
j=1

exp(ln 2 − ϵn0)
j

=
2 exp(−ϵn0)

1 − 2 exp(−ϵn0)
< 4 exp(−ϵn0)

The last inequality holds because 2 exp(−ϵn0) is smaller than

1/2 when ϵ > 2 ln 2/n0.
Then for terminality, suppose S is an (α , β )−Occam solver

for constant α ≥ 1, 0 ≤ β < 1, and the size of the smallest

valid program is s . In the tth turn, the size of the program

synthesized by S is at most csα 2t β for some global constant

c , and the threshold is 2
t
. Consider the following derivation.

csα 2t β ≤ 2
t ⇐⇒ 2

t (1−β ) ≥ csα ⇐⇒ t ≥

⌈
ln c + α ln s

ln 2 · (1 − β )

⌉

Therefore, when the number of turns is large enough, the

threshold must be satisfied and thus the iterative algorithm

must terminate when S is an Occam solver. □

C.2 Proofs for Appendix A
Theorem C.8 (Theorem A.1). Any result found by decompo-
sition is a valid solution for LP(M,p,h).

Proof. Consider the procedure of decomposition, there are

two possible cases. In the first case, f = null in the first step.

(null , c1, . . . , cn ) is valid for PLP(m,p,h)

⇐⇒ p ◦mi = ci ◦ Fmi (p△null )

⇐⇒ (p ◦mi )△null = (ci△null ) ◦ Fmi (p△null )

⇐⇒ (p△null ) ◦mi = (ci△null ) ◦ Fmi (p△null )

⇐⇒ (null , c1△null , . . . , cn△null ) is valid for LP(M,p,h)

In the second case, f , null in the first step.

( f , c1, . . . , cn ) is valid for PLP(M,p,h)

( f ′, c ′
1
, . . . , c ′n ) is valid for LP(M, f ,h△ f )

⇐⇒ p ◦mi = ci ◦ Fmi (p△ f )

( f △ f ′) ◦mi = c
′
i ◦ Fmi ((h△ f )△ f

′)

⇐⇒ p ◦mi = ci ◦ Fmi (φl ◦ (h△( f △ f
′)))

( f △ f ′) ◦mi = c
′
i ◦ Fmi (φr ◦ (h△( f △ f

′)))

⇐⇒ p ◦mi = (ci ◦ Fmiφl ) ◦ Fmi (h△( f △ f
′))

( f △ f ′) ◦mi = (c ′i ◦ Fmiφr ) ◦ Fmi (h△( f △ f
′))

⇐⇒ (p△( f △ f ′)) ◦mi =

((ci ◦ Fmiφl )△(c
′
i ◦ Fmiφr )) ◦ Fmi (h△( f △ f

′))

⇐⇒ ( f △ f ′, c∗
1
, . . . , c∗n ) is valid for LP(M,p,h)

□

Theorem C.9 (Theorem A.2). Any result found by decompo-
sition* is a valid solution for PLP(M,p,h).

Proof.

∀i ∈ [1,n], ( fi , ci ) is valid for SPLP(mi ,p,h)

⇐⇒ p ◦mi = ci ◦ Fmi (p△ fi )

⇐⇒ p ◦mi = ci ◦ Fmi (φi ◦ (p△( f1△ . . . △ fn )))

⇐⇒ p ◦mi = (ci ◦ Fmiφi ) ◦ Fmi (p△( f1△ . . . △ fn ))

⇐⇒ ( f1△ . . . △ fn , c1 ◦ Fm1
φ1, . . . , cn ◦ Fmnφn ) is valid

□

Theorem C.10 (Theorem A.3). Any ( f , c ) found by rule de-
coupling is a valid solution for SPLP(m,p,h).

Proof. This theorem is directly from the fact that c is a solu-
tion for Sc (m,p,h, f ). □

Lemma C.11 (Completeness of Decoupling). For any task
SPLP(m,p,h) and any valid solution f for subtask Sf (m,p,h),
subtask Sc (m,p,h, f ) always has a solution if for any function
v mapping from the output domain of Fm (h△ f ) to the output
domain of p ◦m, there is always a program in the program
space of c that is semantically equivalent to v .

Proof. For any solution f for Sf (m,p,h), define function vf
as the following, where v0 is an arbitrary output.

vf x B



(p ◦m) i ∃i, (Fm (h△ f )) i = x

v0 ∀i, (Fm (h△ f )) i , x

The following shows that vf x is a well-defined function.

f is valid for Sf (m,p,h)

⇐⇒ Fm (h△ f ) i = Fm (h△ f ) i ′ → p (m i ) = p (m i ′)

⇐⇒ (vf x ) is unique for all x

By the condition, there exists a program c that is seman-

tically equivalent to function vf and thus satisfies p ◦m =
c ◦ (ϕ (h△ f )). Therefore, c is valid for Sc (m,p,h, f ). □
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Theorem C.12 (Theorem A.4). For any task Sf (m,p,h), a
grammar Gf and a target program f ∗ ∈ Gf , the probability
for a (α , 0)-Occam solver to synthesize a program f different
from f ∗ is negligible if (1) all related programs (p,h and pro-
grams in Gf ) returns a constant number of scalar values; (2)
all used arithmetic operators are linear; (3) the semantics of
p,h and programs in Gf /{ f

∗} are independently drawn from
all functions mapping from the corresponding input space to
the corresponding output space.

Proof. The following is the specification of Sf (m,p,h).

Fm (h△ f ) i = Fm (h△ f ) i ′ → p (m i ) = p (m i ′)

Let In be a limited space containing all inputs where the

size is at most n and the contents are integers in [−n,n].
The size of In is (2n + 1)n = exp(Ω(n lnn)). In the following

discussion, we assume that the domains of i and i ′ are In .
Let f be an unwanted program in Gf /{ f

∗}. According to

the first assumption, all ofm,p, f outputs a constant number

of scalar values. Let no (д) be the number of scalar values in

the output of program д. Clearly, no (д) ≤ size(д).
According to the second assumption, all used arithmetic

operators are linear. At this time, each operator in the pro-

gram can only update each value via a linear expression on

the existing values. Letmc be the maximum absolute value of

coefficients used by an operator. Then for any program д and
any input i where the size is at mostn1 and the absolute value
of the content is at most n2, the absolute value of contents
in д i is at most n2 (cn1)

size(p ) = n2 exp(O (size(д) lnn1)).
Let Of be the range of Fm (h△ f ) on In . At this time, the

size of the input is n, the contents in the input is in [−n,n],
and the size of Fm (h△ f ) is O (size( f )). Therefore, |Of | =

(n exp(O (size( f ) lnn)))no (Fm (h△f ))
. Because Fm and h are

fixed, there exists constant co such that no (Fm (h△ f )) ≤
cono ( f ), and thus |Of | = exp(O (no ( f )size( f ) lnn)). Because
no ( f ) is at most size( f ), |Of | = exp(O (size( f )2 lnn)).

Let Op be the range of p ◦m on In . Similarly to Of , we

have |Of | = (n exp(O (size(p ◦m) lnn)))no (Fm (p◦m))
. Because

both p andm are fixed, |Of | = exp(O (lnn)).

Let i0 be any fixed input in In , and i be another input

in In/{i0}. Under the third assumption, when the semantics

are random, the probability for f to be invalid on example

(i0, i ) is a = (1 − |Op |
−1) |Of |

−1
, which is at least

1

2
|Of |

−1

when |Op | ≥ 2. Because the randomness comes from the

semantics on input i , the cases, where different i are used,
are independent. As there are |In | − 1 different choices of i ′,
the following shows an upper bound on the probability for

f to be valid on the input space In .

(1 − a) |In |−1 ≤ exp(−a( |In | − 1)) ≤ exp(−( |In | − 1)/(2|Of |))

Now, consider the probability for a (α , 0)-Occam solver

to synthesize an unwanted f . By the definition of Occam

solvers, size( f ) ≤ csize( f ∗), where c is some constant. There-

fore, there are only O (exp(size( f ∗))) different programs un-

der such a size limit. Therefore, the following shows an upper

bound on the probability for the Occam solver to return an

unwanted result.

O (exp(size( f ∗))) × exp(−( |In | − 1)/(2|Of |))

Note that |Of | = exp(O (size( f )2 lnn)) is significantly smaller

than |In | = exp(Ω(n lnn)) when n → +∞. Therefore, such a

probability becomes negligible when n is large enough. □

Lemma C.13 (Lemma A.5). For any task Sf (m,p,h) and a
set E of examples, composed program f is uncovered on E ⇒

∀f ′ ⊆ f , f ′ is uncovered on E.

Proof. Suppose f is uncovered on E and there is a composed

program f1 ⊆ f that is covered on E. At this time, there is a

program f2 ≺c f1 and E |f1 ⊆ E |f2 .

We useC ( f ) to denote the set of lifting functions used in f .

Let f3 be the composed program including lifting functions in

C ( f )/C ( f1), and let f ′ be the composed program including

lifting functions in C ( f2) ∪ C ( f3). By the definition of ≺c ,

it is easy to prove that f ′ ≺c f . Meanwhile, we have the

following inequality.

E |f = E |f1 ∪ E |f2 ⊆ E |f3 ∪ E |f2 = E |f ′

Therefore, there is a composed program f ′ that is not only

simpler than f under ≺c but also satisfies all examples sat-

isfied by f . Such a result conflicts with the fact that f is

observationally uncovered on E. □

Theorem C.14 (Theorem A.6). Given task Sf (m,p,h) and a
setE of examples, let S be the set of all valid composed programs.
When S is non-empty, Oc always terminates. Besides, the
program f ∗ synthesized by Oc always satisfies (1) validity:
f ∗ ∈ S , (2)minimality, ∀f ∈ S,¬

(
f ≺c f ∗

)
.

Proof. We start with the terminality. For each composed pro-

gram f = [f1, . . . , fk ] ∈ S , f1△ . . . △ fk is inside Gf . Define

set S ′ as the set of lifting schemes corresponding to com-

posed programs in S , i.e., { f1△ . . . △ fk | ( f1, . . . , fk ) ∈ S }.
Clearly, lifting schemes in S ′ must be valid for Sf (m,p,h) on
E. Because the enumerator Oe is complete, it can find a valid

lifting scheme in finite time and thus Oc must terminate.

Then for validity, because Oc returns only when f is veri-

fied to be correct (Line 19), the result must be valid.

At last, we prove the minimality via the following claim.

• Claim: Each time when f = [f1, . . . , fk ] is added into

workingList[k] (Line 10), for all uncovered programs f ′ ≺c
f , f ′ must be included in either workingList[k] orminList.
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When this claim holds, suppose f ∗ is covered. There must

a program f that is simpler than f ∗ under ≺c and satis-

fies all examples in E. By the claim, when f ∗ is added to

workingList[k], f is either inside minList or workingList[k].

• When f is insideminList, f must have been enumerated by

the main loop in some previous turn. Therefore, Oc should

have terminated before visiting f ∗, which contradicts with

the fact that f ∗ is the result.

• When f is inside workingList[k], according to Function

NextComposedProgram, programs in workingList[k] are
returned in order. Therefore, f must also be visited by the

main loop before f ∗. Similar with the previous case, at this

time, f must be returned as the result instead of f ∗ and
thus and thus a contradiction emerges.

Now we prove the claim by induction on the order of pro-

grams inserted into workingList. For composed program д =
[д1, . . . ,дk ] and any composed program д′ = [д′

1
, . . . ,д′k ′]

that is simpler than д under ≺c and is observationally un-

covered. There are three cases.

1. k ′ < k . By the definition of ≺c , [д1 . . . ,дk−1] is lexico-
graphically no smaller than [д′

1
, . . . ,д′k ′]. By the implemen-

tation of InsertNewPrograms() (Lines 9-14), program

[д1, . . . ,дk−1] is exactly the composed program f visited

by the main loop. Therefore, we have ( f = д′) ∨ (f ≺c д′).
For the former case, f has just been inserted into minList
(Line 10). For the latter case, the claim can be directly

obtained from the induction hypothesis.

2. k ′ = k and [д1, . . . ,дk−1] , [д′
1
, . . . ,д′k−1]. Similar with

case (1), we know [д1, . . . ,дk−1] is the composed program

f visited by the main loop. Let composed program f ′

be [д′
1
, . . . ,д′k−1]. Then f ′ must be simpler than f by the

definition of ≺c . Therefore, by the induction hypothesis,

f ′ must have been enumerated by the main loop in some

previous turn, and in that turn, д′ must have been added

to workingList[k]. Therefore, the claim is obtained.

3. k ′ = k and [д1, . . . ,дk−1] = [д′
1
, . . . ,д′k−1]. At this time,

both д and д′ will be added into the queue in the same

invocation of InsertNewPrograms(). By the induction

hypothesis, because Oe enumerates programs according

to <s , lifting functions in minList[1] must be in the or-

der of <s . Therefore, д′ will be inserted to workingList[k]
before д and thus the claim is obtained.

So far, we prove the claim, and thus prove theminimality. □

Theorem C.15 (Theorem A.7). Synthesizer Oc (Algorithm
1) is a (1, 0)-Occam solver for Sf .

Proof. Let f = [f1, . . . , fk ] be the composed program syn-

thesized by Oc and f ∗ be the smallest valid program in Gf .

Because (1) Oc only uses those programs enumerated by

Oe , (2) Oe enumerates programs from small to large, i.e.,

∀fa , fb ∈ Gf , size( fa ) < size( fb ) implies that fa <s fb , we

know that ∀i ∈ [1,k], size( fk ) ≤ size( f ∗). Therefore, we
have the following inequality.

size( f1△ . . . △ fk ) =
k∑
i=1

size( fk ) + (k − 1) × c

≤ 2

k∑
i=1

size( fk )

≤ 2ksize( f ∗) ≤ 2nc size( f
∗)

where c represents the binary bits used to express the opera-

tor △. Because nc is a constant, this inequality implies that

Oc is a (1, 0)-Occam solver. □

C.3 Proofs for Appendix B
TheoremC.16 (Theorem B.1). For any task LP(M,p,h) that
has at least one solution, Algorithm 2 must terminate with a
correct solution if SCSolver is complete, i.e., for any task
Sc (m,p,h, f ) that has at least one correct solution, SCSolver
can always find a correct solution within finite time.

Proof. Let ( f ∗, c∗
1
, . . . , c∗n ) be any valid solution. Clearly, a

solution to LP(M,p,h) will be found if PLPSolver could (1)

find a solution using f ∗ as the lifting scheme for PLP(M,p,h),
and (2) a solution using null as the lifting scheme for task

PLP(M, f ∗,h△ f ∗).
Then, such two solutions will be found by PLPSolver is

∀i ∈ [1,n], SPLPSolver could (1) find a solution using f ∗ as
the lifting scheme for SPLP(mi ,p,h) and (2) find a solution

using null as the lifting scheme for SPLP(mi , f
∗,h△ f ∗).

These two conditions are equivalent to (1) SFSolver find

some specific solution for 2n subtasks, and (2) SCSolver find
a solution for 2n subtasks. By the definition of SFSolver
and the completeness of SCSolver, all of these goals can be

achieved within finite time, and thus their total time cost

is also finite. Therefore, when timeout is iterated to a large

enough number, a correct solution will be found . □

D Appendix: Algorithmic Tactics
In this subsection, we supply details on the four algorithmic

tactics used in dataset DL .

D.1 Tactics for Longest Segment Problem
For the longest segment problem LSP, DL involves 3 algo-

rithmic tactics for predicates with different properties.

D.1.1 Tactic Al,1. The first Al,1 requires predicate b to be

both prefix-closed and overlap-closed, where:
• Predicate b is prefix-closed if b (l1 ++ l2) → b l1.
• Predicate b is overlap-closed if the following is satisfied.

(len(l2) > 0 ∧ b (l1 ++ l2) ∧ b (l2 ++ l3)) → b (l1 ++ l2 ++ l3)

Figure 6 shows the algorithmic template of Al,1. Function

lsp is a single-pass function that consider each prefix of A in
order. In the loop, three values res, len and info are stored.
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1 struct Info {

2 bool is_valid;

3 // Variables representing f l.

4 };

5 int lsp(int* A, int n){

6 int res = 0, len = 0;

7 Info info = {/*b [], f []*/};

8 for (int i = 0; i < n; ++i) {

9 info = /*c info A[i]*/;

10 if (!info.is_valid) {

11 info = {/*b [A[i]], f [A[i]]*/};

12 if (info.is_valid) {

13 len = 1;

14 } else {

15 len = 0, info = {/*b [], f []*/};

16 } else {

17 len += 1;

18 }

19 res = max(res , len);

20 }

21 return res;

22 }

Figure 6. The algorithmic template for tactic Al,1

• res represents the length of the longest valid segment.

• len represents the length of the longest valid suffix ls .
• info represents the output of b△ f on ls .

Because b is prefix-closed and overlap-closed, each time

when a new element is considered, the longest valid suf-

fix must be ls (A[0 . . . i − 1]) ++ [Ai ], [Ai ] or []. Therefore,

lsp verifies these three choices and picks the first valid one

among them (Lines 9-18). At this time, combinator c is used to
quickly update info and verify whether ls (A[0 . . . i − 1]) +
+ [Ai ] is correct (Line 9).

To ensure the correctness, the following application con-

dition must be satisfied. The corresponding synthesis task is

LP({λ(l1,a). l1 ++ [a]},b).

(b△ f ) (l ++ [a]) = c
(
(b△ f ) l ,a

)
D.1.2 Tactic Al,2. The second tactic Al,2 requires b to be

prefix-closed, of which the template is shown as Figure 7.

Similar to tactic Al,1, Al,2 also calculates the longest valid

suffix for each prefix of A (Lines 8-24). However, when b is

only prefix-closed, we can only know that the longest valid

suffix of prefixA[0 . . . i] is equal to the longest valid suffix of

s = (ls (A[0 . . . i − 1])) ++ [Ai ]. Therefore, Al,2 tries suffixes

of s in order (Lines 8-22). Each time,Ai,2 checks whether the

current suffix is valid via combinator c1 (Line 10). If it is not,
Ai,2 removes the first element via combinator c2 (Line 20).

1 struct Info {

2 bool is_valid;

3 // Variables representing f l.

4 };

5 int lsp(int* A, int n){

6 int res = 0, len = 0;

7 Info info = (Info){/*b [], f []*/};

8 for (int i = 0; i < n; ++i) {

9 while (1) {

10 Info info2 = /*c1 info A[i]*/

11 if (info2.is_valid) {

12 info = info2;

13 len = len + 1;

14 break;

15 }

16 if (len == 0) {

17 info = (Info){/*b [], f []*/};

18 break;

19 }

20 info = /*c2 info A[i-len]*/;

21 len = len - 1;

22 }

23 res = max(res , len);

24 }

25 return res;

26 }

Figure 7. The algorithmic template for tactic Al,2

To ensure the correctness, the following application con-

dition must be satisfied.

(b△ f ) (l ++ [a]) = c1
(
(b△ f ) l ,a

)
(head l = a) → (b△ f ) (tail l ) = c2

(
(b△ f ) l ,a

)
The corresponding synthesis task can be regarded as a lim-

ited version of LP({λ(l1,a). (l1 ++ [a]), λ(l1,a). (tail l1)},b),
where the input (l1,a) of the second modifier must satisfy

head l = a. AutoLifter can be naturally extended to this task

by filtering out invalid examples while sampling.

D.1.3 Tactic Al,3. The third tactic Al,3 does not have re-

quirement on b, but is parameterized by a compare operator

R ∈ {<, >, ≤, ≥}. The template of Al,3 is shown as Figure 8.

Tactic Ai,3 uses a technique namely segment partition.
Given an order R, the segment partition of a list x[1 . . .n]
is a series of segments (r0 = 0, r1], (r1, r2], . . . , (rk−1, rk =
n] satisfying (1) ∀i ∈ [1,k], j ∈ (ri−1, ri ),x j R xri and (2)

∀i ∈ [2,k],¬(xri−1 R xri ). For convenience, we denote range
(ri−1, ri ) as the content of the ith segment (ri−1, ri ].
Ai,3 maintains the segment partition for each prefix of A.

• num represents the number of segments in the partition.

• rpos[i] represents the value of ri .
• info[i] records the outputs of p (the length of the longest

valid segment) and f on the content of the ith segment.



Conference’17, July 2017, Washington, DC, USA Ruyi Ji, Yingfei Xiong, and Zhenjiang Hu

1 struct Info{

2 int res; // Variable representing p l

3 // Variables representing f l

4 }info[N];

5 int rpos[N];

6 int solve(int *A, int n) {

7 int num = 0;

8 for (int i = 0; i < n; i++) {

9 Info now = {/*p [], f []*/};

10 while (num >0&&/*A[rpos[num]] R A[i]*/){

11 now=/*c info[num] A[rpos[num]] now*/;

12 --num;

13 }

14 num ++; rpos[num]=i; info[num]=now;

15 }

16 Info now = {/*p [], f []*/};

17 for (int i = num; i > 0; i--) {

18 now = /*c info[i] A[rpos[i]] now*/;

19 merge(info[i], A[rpos[i]], now);

20 }

21 return now.res;

22 }

Figure 8. The algorithmic template for tactic Al,3

Each time, when a new element is inserted, Ai,3 merges the

last several segments together using combinator c to ensure

that the remaining segments form a partition of the current

prefix (Line 9-14). Then, after all elements are inserted, the

segment partition of the whole list is obtained. Ai,3 merges

these segments together (Lines 16-20) and gets the result.

To ensure the correctness, the following application con-

dition must be satisfied.(
(∀a′ ∈ l1,a

′Ra) ∧ (∀a′ ∈ l2,¬aRa
′)
)
→

(p△ f ) (l1 ++ [a] ++ l2) = c
(
(p△ f ) l1,a, (p △ f ) l2

)
where p represents the program that calculates the length

of the longest segment satisfying b. The synthesis task is a

limited version of LP({λ(l1,a, l2), l1 ++ [a] ++ l2},p).

D.1.4 Guarantee. Similar to divide-and-conquer, for all

above tactics, the efficiency of the synthesized program is

guaranteed under the two assumptions made in Section 4.

Theorem D.1 (Efficiency on Al,i ). For any task LSP(b), let
p∗ be the program synthesized by applying Al,1,Al,2 or Al,3
where the lifting scheme returns a constant number of scalar
values. Then p∗ is runs in linear time with respect to the length
of the input list, under the assumption that any operator on
scalar values is constant time.

As discussed in Appendix B.2, the default grammars Gf
and Gc used by AutoLifter satisfies both assumptions and

thus the synthesis result of AutoLifter for tactics Al,1,Al,2
and Al,3 are guaranteed to be efficient.

D.1.5 Usage. Similar to divide-and-conquer, given a black-

box program p, the application of Al,1,Al,2 and Al,3 can be

fully automated via AutoLifter .
First, the semantics of predicate b required by Al,1 and

Al,2 can be extracted from p as b l B (p l = len l ).
Second, given the semantics of predicateb, property prefix-

closed and overlap-closed can be tested on random samples.

Third, there are at most 7 ways of applying these tactics:

Al,1,Al,2, and Al,3 with four possible R. Therefore, we can
enumerate on these 7ways with a time limit, or directly tries

them simultaneously in parallel.

D.2 Tactic for Range Update and Range Query
D.2.1 Tactic Ar . Given task RANGE(h,u), let Th ,Tx and

Tu be the types of the output of h, the elements in x , and the

first parameter of u respectively. Ar requires the semantics

ofu to form a monoid. It requires one element a0 ∈ Tu and an

operator ⊗ : Tu ×Tu 7→ Tu satisfying the following formulas.

u (a0,w ) = w u (a1,u (a2,w )) = u (a1 ⊗ a2,w )

The template of tactic Ar is shown as Figure 9. Ar uses

arrays info and tag to implement a segment tree.

• info[1] records the information on the root node, which

corresponds to the whole list, i.e., range [0,n − 1].
• info[2k] and info[2k +1] correspond to the left child and
the right child of node k respectively.

• For each node k , info[k] records the function values of h
and f on the segment corresponding to node k .
• Array tag records the lazy tag on each node. tag[k] repre-
sents that all elements inside the range corresponding to

node k should be updated via utag[k], but such an update

has not been applied to the subtree of node k yet.

There are several functions used in the template:

• apply deals with an update on all elements in the range

corresponding to node i by updating info[i] via combi-

nator c2 (Line 7) and updating the tag via ⊗ (Line 8).

• pushdown applies the tag on node i to its children (Lines

11), and clear the tag on node i (Line 12).

• initialize initializes the information for node i which
corresponds to range [l , r ]. It firstly recurses into two chil-

dren (Lines 20-21) and thenmerges the sub-results together

via combinator c1 (Line 22).

• upd applies an update ([L,R], ua ) to node i which corre-

sponds to range [l , r ]. If [l , r ] does not overlap with [L,R],
the update will be ignored (Line 25). If [l , r ] is contained
by [L,R], the update will be performed via the lazy tag

(Line 27). Otherwise, upd recurses into the two children

(Lines 30-31) and merges the sub-results via c2 (Line 32).

• query calculates a sub-result for query [L,R] by consider-

ing elements in node i only. It is implemented similarly

to function upd.
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1 struct Info {

2 Th res; // Variable representing h l.

3 // Variables representing f l.

4 }info[N];

5 Tu tag[N];

6 void apply(int i,Tu a){

7 info[i] = /*c2 info[i] a*/;

8 tag[i] = /*tag[i] ⊗ a*/;

9 }

10 void pushdown(int i){

11 apply(i*2, tag[i]); apply(i*2+1, tag[i]);

12 tag[i] = a0;
13 }

14 void initialize(int i,Tx *A,int l,int r){

15 if (l == r) {

16 info[i] = /*h [A[l]], f [A[l]]*/;

17 return;

18 }

19 int mid = l + r >> 1;

20 initialize(i*2, A, l, mid);

21 initialize(i*2+1, A, mid+1, r);

22 info[i] = /*c1 info[i*2] info[i*2+1]*/;

23 }

24 void upd(int i,int l,int r,int L,int R,Tu a){

25 if (l > R || r < L) return;

26 if (l >= L && r <= R) {

27 apply(i, a); return;

28 }

29 int mid = l + r >> 1; pushdown(i);

30 upd(i*2, l, mid , L, R, a);

31 upd(i*2+1, mid+1, r, L, R, a);

32 info[i] = /*c1 info[i*2] info[i*2+1]*/;

33 }

34 Info query(int i,int l,int r,int L,int R){

35 if (l > R || r < L) return {/*h [], f []*/};

36 if (l >= L && r <= R) return info[i];

37 int mid = l + r >> 1; pushdown(i);

38 Info ql = query(i*2, l, mid , L, R);

39 Info qr = query(i*2+1, mid+1, r, L, R);

40 return /*c1 ql qr*/;

41 }

42 void range(int n,Tx *A,int m,Operator* op){

43 initialize (1, A, 0, n-1);

44 for (int i = 0; i < m; ++i) {

45 if (op[i].type == Update) {

46 upd(1,0,n-1,op[i].l,op[i].r,op[i].a);

47 } else {

48 Info r = query(1,0,n-1,op[i].l,op[i].r);

49 print(r.res);

50 }

51 }

52 }

Figure 9. The algorithmic template for tactic Ar

To solve a Range task, Ar (1) initializes the segment tree

via function initialize (Line 43), and then (2) invokes the

corresponding functions for each operator (Lines 44-51).

To ensure the correctness, the following application con-

dition must be satisfied.

(h△ f ) (map ua l ) = c1
(
(h△ f ) l ,a

)
(h△ f ) (l1 ++ l2) = c2

(
(h△ f ) l1, (h△ f ) l2

)
The synthesis task corresponding to this condition can be

regarded as LP({λ(l1,a).map ua l1, λ(l1, l2). l1 ++ l2},h).

D.2.2 Guarantee. For tactic Ar , the efficiency of the syn-

thesized program is still guaranteed under the two assump-

tions made in Section 4. Therefore, when the default gram-

marsGf ,Gc are used, the efficiency of the result synthesized

by AutoLifter for RANGE is guaranteed.

TheoremD.2 (Efficiency onAr ). For any task RANGE(u,h),
let p∗ be the program synthesized by applying Ar where the
lifting scheme returns a constant number of scalar values. Then
the time complexity ofp∗ isO (n+m logn), wheren is the length
of the input list andm is the number of operations, under the
assumption that any operator on scalar values is constant time.

D.2.3 Usage. When the semantics of the query function h
and the update function u are given, the application of Ar
can be fully automated via AutoLifter . Though element a0
and operator ⊕ are required by Ar , they can be synthesized

from the semantics of u via an inductive synthesizer.

However, it is difficult to automatically apply Ar when

only a black-box program p from RANGE(h,u) is given, be-
cause the semantics of p is not enough for us to either extract

the semantics or get a complete specification for h and u.
Because our paper focuses on the lifting problem, recovering

the semantics of h and u from the semantics of p is out of

our scope. Therefore, We leave this subtask to future work.

E Appendix: Evaluation
E.1 Extra Operators
As discussed in Section 7.3 and 7.4, for 9 tasks, we manually

supply operators to AutoLifter under the enhanced setting.

In this section, we report the details on these extra operators.

Task atoi in DD . The input program of task atoi is shown
as Figure 10, which converts a list to an integer by regarding

the list as a decimal string.

1 int atoi(int n, int *A) {

2 int res = 0;

3 for (int i = 0; i < n; ++i) {

4 res = res * 10 + A[i];

5 }

6 return res;

7 }

Figure 10. The input program of task atoi.

Under the enhanced setting, we supply operator pos(x ) B
10

x
to grammar Gc .
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Taskmax_sum_between_ones inDD . The input program

of this task is shown as Figure 11, which calculates the max-

imum sum among segments that does not include number 1.

1 int max_sum_between_1s(int n, int *A) {

2 int ms = 0, cs = 0;

3 for (int i = 0; i < n; ++i) {

4 cs = A[i] != 1 ? cs + A[i] : 0;

5 ms = max(ms, cs);

6 }

7 return ms;

8 }

Figure 11. The input program of max_sum_between_ones.

Under the enhanced setting, we supply operator pt1 to
grammarGf , where pt1 l is defined as the longest prefix of l
that does not include 1 as an element.

Task lis in DD . The input program of task lis is shown as

Figure 12, which calculates the length of the longest segment

such that all elements are ordered.

1 int lis(int n, int *A) {

2 int cl = 0, ml = 0, prev = A[0];

3 for (int i = 1; i < n; ++i) {

4 cl = prev < A[i] ? cl + 1 : 0;

5 ml = max(ml, cl);

6 prev = A[i];

7 }

8 return ml;

9 }

Figure 12. The input program of task lis.

Under the enhanced setting, we supply operator lp to

grammar Gf . lp takes a list l and a binary compare operator

R ∈ {<, >, ≤, ≥} as the input, and returns the longest prefix

of l that is ordered with respect to R.
Task largest_peak inDD . The input program here is shown

as Figure 13, which calculates the maximum sum among

those segments that all elements are positive.

1 int largest_peak(int n, int *A) {

2 int cmo = 0, lpeak = 0;

3 for (int i = 0; i < n; ++i) {

4 cmo = A[i] > 0 ? cmo + A[i] : 0;

5 lpeak = max(cmo , lpeak);

6 }

7 return lpeak;

8 }

Figure 13. The input program of task largest_peak.

Under the enhanced setting, we supply lp’ to grammarGf .

lp’ takes a list l and a predicate b as the input, and returns

the longest prefix of l where b is satisfied by all elements.

Task longest_reg and count_reg in DD . There is a series

tasks in DD that performing regex matching on the list.

These tasks can be divided into two categories:

• The input program of longest_reg calculates the length of

the longest segment that matches a given regex.

• The input program of count_reg counts the number of

segments that matches a given regex.

There are four such tasks on which AutoLifter fails if

no extra operator is supplied: count_1(0*)2, longest_1(0*)2,
longest_(00)*, longest_odd(0+1)*. Under the enhanced setting:
• We add operator prefix_match and suffix_match to gram-

mar Gf for count_1(0*)2, longest_1(0*)2, longest_odd(0+1)*.
They take a list l and a regex r as the input, and return the

longest prefix and suffix of l that matches r respectively.
Besides, we also embed a sub-grammar for regex to Gf ,

which allows the AutoLifter to produce necessary regular

expressions using ∗, | and concatenation.

• We add operatormod2 to grammarGc for longest_(00)*and
longest_odd(0+1)*, because they require the combinator to

tell the parity of an integer.

Benchmark page21 in DL . The input program of page21
is shown as Figure 14, which calculates the length of the

longest segment satisfying that the leftmost element is the

minimum and the rightmost element is the maximum.

1 int page21(int n, int *A) {

2 int ans = 0;

3 for (int i = 0; i < n; ++i) {

4 int ma = -INF;

5 for (int j = i; j < n; ++j) {

6 if (A[j] < A[i]) break;

7 ma = max(ma, A[j]);

8 if (ma == A[j])

9 ans = max(ans , j - i + 1);

10 }

11 }

12 return ans;

13 }

Figure 14. The input program of task page21.

Under the enhanced setting, we supply operator min_pos
to grammarGf , which returns a list containing the positions

of all prefix minimal in the input list.

E.2 Case Study
In this subsection, we complete the case study in Section 7.5.

Maximum Segment Product. The first problem is named

as maximum segment product (msp) [Bird 1989], which is an

advanced version of mss: Given list l[1 . . .n], the task is to

select a segment s and maximize the product of values in s .
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It is not easy to write a divide-and-conquer parallel pro-

gram for this problem. According to the experience on solv-

ing mss, one may choose the maximum prefix/suffix product

as the lifting functions. However, these two functions are

not enough. It is counter-intuitive that the maximum seg-

ment product is also related to theminimum prefix/suffix

product. This is because both the minimum suffix product

and the maximum prefix product can be negative integers

with a large absolute value, and thus their product flips back

the sign, resulting in a large positive number.

This task foxes Parsynt as its transformation rules are

not enough to extract these lifting functions, which are for

the minimum, from the initial program, which is for the

maximum. In contrast, by synthesizing from the semantics,

AutoLifter successfully solve this task using 80.65s seconds.
The solution found by AutoLifter is shown as the following.

f l B
(
max (scanl × l ),max (scanl × l ),min (scanl × l ),

min (scanl × l ), head (scanr × l )
)

msp (l1 ++ l2) = max

(
msp l1,msp l2,maxtp l1 ×maxpp l2,

mintp l1 ×minpp l2
)

The five lifting functions calculates the maximum prefix

product (maxpp), the maximum tail product (maxtp), the
minimum prefix product (minpp), the minimum tail product

(maxtp) and the product of all elements (prod) respectively.
For simplicity, we only report the partial combinator formsp
here, and abbreviate if-then-else operators via max.

Longest Segment Problem 22-2. This second problem is

proposed by Zantema [1992], which is used as the second

example on Page 22 of that paper. The task is to find a linear-

time algorithm that calculates the length of the longest seg-

ment s satisfying min s +max s > len s for a given list.

This problem is known to be difficult even for professional

players in competitive programming. It has been set as a

problem in 2020-2021 Winter Petrozavodsk Camp, which is

a worldwide training camp representing the highest level of

competitive programming, and the result is that only 26 out

of 243 teams successfully solves this problem within 5 hours.

Tactic Al,3 with compare operator > is applicable to solve

this problem. The corresponding synthesis task is to find

two programs f and c such that for any two lists l1, l2 and
integer a satisfying that ∀b ∈ l1,a < b and ∀b ∈ l2,a ≤ b:

(lsp △ f ) (l1 ++ [a] ++ l2) = c
(
(lsp △ f ) l1,a, (lsp △ f ) l2

)
where lsp represents any correct program for this problem

without considering the time complexity.

AutoLifter could find lifting functions (len l ,max l ) and
a correct combinator c using only 14.33 seconds. The struc-
ture of c is complex, and here we only explain the partial

combinator c ′ for lsp. Whenmax l1 ≥ max l2, c
′
deals with

the following 2 cases:

• When a + max l1 > len l1 + 1, the following expression

shows the result of c ′.

max(lsp l2,min(len l1 + len l2 + 1,a +max l1 − 1))

This is correct because there are only three possible cases

for the longest valid segment: the longest valid segment

s1 in l1, the longest valid segment s2 in l2, and the longest

valid segment sa contains element a.
First, as a +max l1 > len l1 + 1, segment l1 ++ [a] is valid
and thus s1 is no longer than sa .
Second, sa must be the prefix of l1 ++ [a] ++ l2 with length

min(len l1+ len l2+1,a+max l1−1), as this list has already
included the largest element in the whole list.

Therefore, the result must be the larger one between the

length of s2, lsp l1, and the length of sa .
• Otherwise, c ′ returns max(lsp p1, lsp p2) as the answer.

This is correct because at this time, any valid segment s
containing a must be no longer than len l1. For any such

segment s , let s ′ be any segment in l1 that containing

the largest element in l1 and has the same length with s .
Because len s ′ = len s,min s ′ ≥ min s andmax s ′ ≥ max s ,
s ′ must also be valid. At this time, because s ′ is inside l1, it
is no longer than the optimal segment in l1, and thus s is
also no longer than the optimal segment in l1. Therefore,
the result must be max(lsp l1, lsp l2) at this time.

For the case wheremax l1 < max l2, c
′
deals with it sym-

metrically. As we can see from this analysis, the correct

combinator for this problem utilizes several tricky proper-

ties, and finding such a combinator is hard for a human user.

In contrast, AutoLifter is able to solve this problem quickly.
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